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Abstract 

 

The Smart Classroom Attendance System developed in this project represents a solution designed 

to enhance the efficiency and accuracy of attendance tracking in educational settings. This system 

outlines the attendance-taking process by adding advanced technologies such as CNN 

(Convolutional Neural Network) and the dlib library for face detection, feature extraction, and 

recognition. The system aims to address specific objectives: achieving high accuracy in identifying 

multiple individuals simultaneously from a distance greater than three meters, verifying ten 

individuals in a single frame, and implementing real-time processing with a target time of 3 to 6 

seconds. 

 

This project investigates the performance of the facial recognition system under various parameters, 

including distance and the number of faces in the frame. The system addresses the challenges faced 

in typical classroom settings for taking attendance by detecting and recognizing multiple faces in 

real-time. It efficiently manages student identities, aligns faces for recognition, and updates 

attendance records in real time, contributing to a more interactive and data-driven educational 

environment. 

 

Despite its advantages, the system faces limitations related to computational complexity and 

hardware constraints, which impact the processing time and accuracy, especially under varying 

distances and different distributions of faces detected. These challenges require ongoing refinement 

and adaptation to ensure the system's reliability and accuracy. Moreover, this project lays the 

foundation for the development of smarter classrooms, where technology optimizes administrative 

tasks, allowing educators to focus on their core mission of teaching. As the system continues to 

evolve through user feedback and performance improvements, it has the potential to revolutionize 

attendance tracking and contribute to the ongoing transformation of educational technology. 
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1-Introduction 

 
1.1 Project Background 

In the age of digital transformation, educational institutions are looking for creative ways to 

improve efficiency, simplify administrative procedures, and create a more engaging, data-

driven learning environment. The effective monitoring of student attendance, previously done 

manually and prone to errors, is an essential component of this change. Conventional 

techniques for recording attendance, including manually calling names or keeping paper 

records, are both fraught with difficulties. They are labor-intensive, prone to human mistakes, 

and do not have the real-time functionality required in today’s classrooms. The need for an 

automated and accurate attendance recording system becomes even more crucial in the typical 

classroom setting, where a small group of students may be present. Instructors often use 

clickers or register manually for attendance recording, which has led to inefficiencies and 

potentially inaccurate data a few decades ago. 

With the evolution of digital technology, there are now more ways to handle these issues, such 

as face recognition technology. Many institutions still encounter the same issues with their 

current attendance record systems, even though some of them are switching to digital 

attendance solutions. These restrictions on the attendance systems often include poor accuracy, 

delays in updating records, and a deficiency of up-to-date information for instructors. Moreover, 

these systems are less effective because they frequently need human assistance. Stakeholders 

in this project include educational institutions, instructors, and students. Accurate attendance 

tracking is crucial for institutions to meet regulatory requirements and improve resource 

allocation. Instructors benefit from having real-time attendance data, allowing them to adapt 

their teaching methods as needed. For students, the system ensures fairness and accountability 

in attendance recording. 

The "Medium Range Facial Recognition for Attendance Recording" project aims to address 

the urgent need for an automated, effective, and precise solution for attendance recording in 

educational institutions. This project aims to build a system that can identify many people at 

once from a distance of more than 3 meters using facial recognition technology. The system 

integrates with a web server using the Flask framework, which manages HTTP requests and 

routing data. Instructors and administrators can review and manage the attendance records in 

an accessible format by automatically recording the recognized faces in an Excel spreadsheet. 
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This project represents a significant step toward the digital transformation of educational 

institutions' attendance recording systems. It aims to optimize administrative tasks, reduce the 

burden on educators, and provide a reliable and scalable solution for attendance tracking. In 

addition, the project also intends to increase data accuracy, lessen administrative burden, and 

improve the overall educational experience for instructors and students by automating 

attendance tracking and incorporating real-time capabilities. 

1.2 Problem Statement 
 
The majority of student attendance in nowadays educational settings is still recorded by hand 

using conventional methods. These traditional techniques have been around for a long time and 

still rely on name-calling, paper registers, and rudimentary clickers. They have proven helpful 

in monitoring attendance, but they have certain inherent issues that prohibit educational 

institutions from advancing into the digital era. The major problem with traditional methods of 

taking attendance is time-consuming and laborious. Time spent teaching is not supposed to be 

wasted on the task of manually recording every student's presence or absence in a classroom. 

This labor-intensive procedure is prone to error, which makes it challenging for institutions to 

administratively reconcile inequalities and produces erroneous attendance records.  

 

Moreover, the current state of attendance tracking is out of step with the needs of current 

educational environments. It lacks the real-time functionality that modern learning 

environments require. It is common for instructors to encounter delays in updating attendance 

records, which impedes their ability to obtain immediate insights regarding student 

engagement. This knowledge is essential for effectively tailoring instructional strategies to 

each student's needs.  Furthermore, the existing attendance tracking is not up to date with the 

changing requirements of educational settings. It doesn't have the necessary real-time features 

that contemporary learning environments demand. Inefficiency and resource misallocation 

might result from inaccurate recordkeeping. The major educators, the instructors, are also 

impacted by the existing state of attendance tracking. Taking attendance manually removes 

them from their primary responsibility, which is to deliver excellent education to students. They 

are unable to evaluate student participation in class and adjust their teaching methods in real-

time due to inaccurate or delayed attendance data which brings substantial effects.  
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Apart from that, the end users of education are the students who are impacted. There has never 

been a greater need for an automatic, accurate, and effective way to check student attendance 

in the classroom. The "Medium Range Facial Recognition for Attendance Recording" project 

aims to solve these issues by automating attendance tracking and including real-time 

capabilities. The suggested solution makes use of face recognition technology to identify many 

people at once from a distance larger than three meters with an approximate accuracy rate of 

93%. However, there are substantial technological obstacles in maintaining this precision in 

different classroom settings and at different distances.  

 

Additionally, the system aims to verify ten individuals in a single frame which requires strong 

image processing methods and a significant amount of processing power. Targeted processing 

times of 3 to 6 seconds were set for multi-face detection and recognition; however, preliminary 

investigations reveal that this goal is difficult to meet because of the computational burden 

associated with processing high-resolution photographs over long distances. The system is 

always being optimized to speed up processing.  To address these technical requirements, the 

system interfaces with a web server using the Flask framework, enabling efficient data handling 

and real-time processing. The system gives instructors and administrators a user-friendly 

approach to monitor attendance by automatically recording recognized faces into an Excel 

spreadsheet. 

 

1.3 Problem Objectives 
 
Under the problem stated in Chapter 1.2, a set of project objectives to address the matter has 

been formulated. These objectives are as shown below: 

 

1. To develop a facial recognition system that can identify multiple individuals 

simultaneously at 93% accuracy with greater distances than 3 meters. 

 

2. To establish a facial recognition system that can verify 10 individuals in one frame. 

 

3. To implement a real-time facial recognition system that has a processing time of 3 to 

6 seconds for multi-face detection and recognition. 
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2-Literature Review 

 
2.1 Student Attendance System 

 
Attendance tracking is a significant aspect of the educational system to ensure that students are 

actively participating in classes and fulfilling their academic obligations. Traditional 

attendance-taking methods often rely on manual processes, which can be labor-intensive, error-

prone, and inefficient in adapting to the demands of modern education. This section explores 

various types of student attendance systems. 

 

Next, various types of student attendance systems have been widely applied worldwide. All of 

those systems are named biometric attendance systems including facial recognition, fingerprint 

recognition, iris recognition, and voice recognition. They offer high accuracy and eliminate the 

possibility of proxy attendance. However, they have pros and cons at the same time.  

 

Fingerprint recognition gives high accuracy and is widely accepted. However, it takes time for 

the verification process so the user has to line up and perform the verification one by one. Thus, 

it is inefficient in this case, especially when quick or mass verification is needed. After that, 

iris recognition is accurate but requires the collection of detailed information, which has 

invaded user privacy. The need for such detailed information can make users hesitant to use 

this technology due to privacy invasion concerns. Hereafter, voice recognition is less accurate 

compared to other recognition systems. Thus, it is not considered as the suitable method to 

apply as attendance tracking for students while the RFID card system can be implemented due 

to its simplicity. However, the user might tend to help their friends to check in as long as they 

have their friend’s ID card. Hence, facial recognition is suggested to be implemented in the 

student attendance system with human faces exposed and contains less detailed information 

compared to iris recognition.  
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System type Advantage Disadvantage 

Fingerprint 

recognition 

High accuracy, widely accepted 

and used, fast recognition process 

Fingerprint can be altered/ damaged, 

sensitive to environmental 

conditions, privacy concerns 

Facial 

recognition 

User-friendly, applicable, no 

physical contact needed 

Accuracy can be affected according 

to facial appearance changes, 

vulnerable to spoofing, privacy 

concerns 

Iris 

recognition 

High accuracy and security, stable, 

reliable with age, unique and 

difficult to forge 

High cost, invasive, limited use in 

low-light environment 

Voice 

recognition 

Non-intrusive, convenient for 

user, can be combined with other 

biometrics system, applicable in 

phone-based and IoT applications 

Vulnerable to audio recordings, 

accuracy affected by background 

voice, user variability 

RFID card 

system 

Easy to use and implement, cost-

effective, no privacy concerns 

related to biometric data 

Cards can be lost or stolen, potential 

for card sharing or “buddy 

punching”, requires distribution and 

maintenance of physical cards 

Table 1: Comparison table between various biometric systems 

 

2.2 Deep learning 
 

Deep learning, a subset of machine learning and artificial intelligence (AI), mimics the way 

humans acquire knowledge, particularly in recognizing patterns across diverse data types like 

photos, text, and audio. It excels in automating tasks that traditionally require human 

intelligence, such as image description and audio transcription. This approach proves pivotal 

in data science, offering data scientists a faster and more efficient means of collecting, 

analyzing, and interpreting large datasets. 

 

In essence, deep learning constructs neural networks with multiple interconnected layers, akin 

to the human brain’s network of neurons. The process involves data collection and pre-

processing, employing deep convolutional neural networks for feature extraction, data 

augmentation to enhance diversity, and training/validation phases for model refinement. 

Ensemble learning, combining multiple models, further boosts accuracy and robustness. 
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Deep learning’s significance lies in its applications, including digital assistants, fraud detection, 

and facial recognition, with high accuracy critical for safety-centric applications like 

autonomous cars and medical devices. The methodology involves training models on vast 

labeled datasets, and its efficacy is demonstrated through advancements in face recognition, 

and handling variations in lighting, pose, and expression. 

 

While deep learning benefits from automatic feature learning and pattern discovery, challenges 

arise from biases in training data, learning rate management, and demanding hardware 

requirements. Despite limitations, deep learning finds applications in customer experience, text 

generation, aerospace, military, industrial automation, colorization of media, and computer 

vision. Ongoing advancements in the field continue to shape its potential applications, making 

deep learning a dynamic force in various industries. [6] 

 

2.3 Transfer learning 

 

Transfer learning, a widely adopted technique in deep learning, involves repurposing a pre-

trained model for a new problem. This approach is particularly popular in scenarios where 

obtaining large labeled datasets is challenging, which is often the case in real-world 

applications. Essentially, transfer learning leverages the knowledge gained from solving one 

task to enhance the generalization capabilities for another related task. For instance, a classifier 

trained to recognize backpacks can use its knowledge to identify other objects like sunglasses. 

In practice, the method involves transferring the learned weights from one task (Task A) to a 

new task (Task B), allowing the model to build upon previously acquired patterns. Transfer 

learning finds extensive application in computer vision and natural language processing tasks, 

such as sentiment analysis, owing to its efficiency in handling complex models that demand 

substantial computational power. It stands out for its ability to save training time, enhance 

neural network performance, and operate effectively with limited data. The decision to employ 

transfer learning arises when there is insufficient labeled data, and a pre-trained network on a 

related task with ample data already exists. The technique proves valuable when the inputs for 

both tasks are the same. Approaches to transfer learning include training a model to reuse it, 

using a pre-trained model, and feature extraction. Popular pre-trained models, like Inception-

v3, ResNet, and AlexNet, further facilitate the adoption of transfer learning in various 

applications. [7] 
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2.4 Comparison between deep learning and transfer learning performance 

 
Deep learning and transfer learning are two prominent techniques within the field of machine 

learning that have revolutionized the way models are developed and deployed for various tasks. 

Both approaches have their unique advantages and use cases. In this section, we will make a 

comparison between deep learning and transfer learning in a paragraph and a table. 

Deep learning, a subset of machine learning, involves training complex neural networks on 

vast datasets to learn representations and patterns directly from the data. It is a data-hungry 

approach, requiring substantial amounts of labelled data and significant computational 

resources. Deep learning models are including deep neural networks (DNNs), convolutional 

neural networks (CNNs), and recurrent neural networks (RNNs). They are designed to handle 

specific tasks, ranging from image classification to natural language understanding. While deep 

learning models excel at tasks they were originally trained for, they often require lengthy 

training times and massive datasets to achieve high accuracy.  

 

Transfer learning enhances the power of deep learning by utilizing knowledge gained from pre-

trained models. These models undergo initial training on diverse and extensive datasets, 

enabling them to encompass a wide range of features and representations. Transfer learning 

adapts these pre-trained models to new, related tasks with smaller datasets. It reduces the need 

for extensive training and large datasets, resulting in faster convergence and often superior 

performance. By fine-tuning pre-trained models, or simply using their features as a starting 

point, transfer learning empowers machine learning practitioners to address specific problems 

efficiently, from image recognition to natural language processing. 

 

Aspect Deep Learning Transfer Learning 

Training data Requires large labeled 

datasets specific to the 

target task 

Can adapt to face recognition tasks with 

smaller datasets, leveraging pre-trained 

models 
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Computational 

Resources 

Demands substantial 

computational power and 

training time for custom 

face recognition models 

Reduces computational requirements by 

building on pre-trained models, enabling 

faster model development 

Model 

Complexity 

Employs custom deep 

neutral networks designed 

for face recognition, which 

can be complex and 

resource-intensive 

Adapts pre-trained models as a starting-

point, simplifying model architecture 

while maintaining performance 

Generalization Achieves high accuracy 

with extensive training 

data but might struggle 

with limited data or 

variations 

Excels at face recognition tasks with 

limited data and challenging variations, 

thanks to pre-trained models  

Data 

Efficiency 

Inefficient when the target 

face recognition task has a 

scarcity of labeled data 

Efficiently handles limited labeled data by 

leveraging pre-trained models and faster 

convergence 

Real-World 

Use Cases 

Applied in various face 

recognition scenarios, such 

as security, attendance 

systems, and access 

control 

Beneficial in real-world scenarios where 

labeled face data is scarce or fast model 

deployment is essential 

Table 2: Comparison table between performance of deep learning and transfer learning 

 

 
In summary, deep learning models developed for face recognition are powerful when they have 

access to large, task-specific datasets and computational resources. They can achieve high 

accuracy in ideal conditions. However, transfer learning in face recognition excels when 

dealing with challenging real-world scenarios, limited labeled data, or when rapid deployment 

is a priority. By leveraging pre-trained models, transfer learning bridges the gap between the 

need for high accuracy and the constraints of real-world applications, making it a valuable 

approach in the field of face recognition. 
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2.5 Face detection techniques 

 
Face detection is a computer vision task that involves identifying and locating human faces 

within digital images or video frames. The primary goal of face detection is to determine the 

presence, position, and often the size and orientation of one or multiple faces in a given visual 

input. It's important to distinguish face detection from face recognition. Face detection focuses 

on finding faces in an image or video, whereas face recognition involves identifying and 

matching those detected faces to specific individuals.  

In addition to detecting faces, face detection typically provides information about the position 

of the detected faces, often expressed as bounding boxes (rectangular regions) around each 

face. These bounding boxes indicate where the faces are located in the image. The picture 

below shows the example of how bounding boxes look like.  

 

 

 
Figure 1: Example of face detection looks like 

 

 

However, face detection can be a challenging task due to variations in lighting, pose, 

expression, and occlusion (when part of the face is obscured). Advanced face detection 

algorithms are designed to handle these challenges. Various types of algorithms and techniques 

are used for face detection, ranging from traditional methods like Haar cascades to more 

advanced deep learning-based approaches using convolutional neural networks (CNNs). Those 

algorithms and techniques are discussed in the small section following. Popular deep learning-

based face detection models include Single Shot MultiBox Detector (SSD) and You Only Look 

Once (YOLO). [8] 
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2.5.1 Viola-Jones Algorithm 
  

Object detection stands as a pivotal domain within computer vision, finding applications in 

diverse fields such as security systems, human-computer interaction, and image and video 

editing. A prominent framework in this realm is the Viola-Jones algorithm, specifically tailored 

for face and eye detection. Conceived by Paul Viola and Michael Jones in 2001, this algorithm 

is distinguished for its speed and efficiency, anchored in the ingenious combination of Haar-

like features and the AdaBoost machine learning algorithm.  

At its core, Haar-like features serve as the foundation of the Viola-Jones algorithm. These 

features are simplistic, rectangular calculations derived by subtracting the sum of pixel 

intensity values in a white region from the sum of intensity values in a black region. AdaBoost, 

on the other hand, plays a pivotal role as a machine learning algorithm that amalgamates 

multiple weak classifiers into a robust and accurate classifier. 

 

The operational workflow of the Viola-Jones algorithm unfolds through a systematic series of 

steps. The process commences with the generation of an extensive set of Haar-like features, 

systematically computed across varied scales and locations within an image. Subsequently, 

AdaBoost is employed to discern the most salient features from this set and to train a classifier, 

harnessing the power of these selected features. The trained classifier then navigates through 

the image, utilizing a sliding window technique to evaluate the presence of an object. Upon 

detection, the window undergoes resizing, and the iterative process continues until the object 

is precisely located.  

 

A compelling feature of the Viola-Jones algorithm lies in its expeditious execution, attributed 

to the utilization of an integral image representation. This representation enables rapid 

calculation of Haar-like features, contributing to the algorithm's impressive speed. 

Additionally, the incorporation of the AdaBoost learning algorithm further enhances efficiency 

by facilitating the training of a potent classifier with a reduced number of features, thereby 

minimizing computational demands. 

 

In essence, the Viola-Jones algorithm stands as a cornerstone in object detection 

methodologies, showcasing a harmonious blend of Haar-like features and AdaBoost to achieve 

rapid and accurate detection of faces and facial features in images. Its versatile applications 
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across various domains underscore its significance in advancing computer vision capabilities, 

offering a glimpse into the nuanced intricacies of this pioneering algorithm. [9] 

 
Figure 2: A demonstration of Viola-Jones algorithm 

 

2.5.2 Histogram of Oriented Gradients (HOG) 

 
The Histogram of Oriented Gradients (HOG) stands as a pivotal feature extraction technique 

within the realms of computer vision and image processing, finding extensive applications in 

the domains of object detection and image recognition. In the intricate landscape of computer 

vision tasks, where the representation of complex visual data in a meaningful and concise 

manner is paramount, HOG emerges as a robust solution by honing in on the distribution of 

gradient orientations within an image. This focus on capturing local intensity gradients and 

their orientations proves instrumental in characterizing object shapes and structures. 

 

The HOG algorithm, a multi-step process, commences with image pre-processing to bolster its 

resilience against lighting variations and noise. This often involves converting the input image 

to grayscale, normalizing pixel intensities, and applying contrast normalization. The 

subsequent step involves the computation of gradient magnitudes and orientations of image 

pixels, facilitating the identification of edges and texture boundaries crucial for subsequent 

analysis. 

 

Following gradient computation, the image is strategically partitioned into small, overlapping 

cells, typically covering regions of 8x8 pixels. Within each of these cells, a histogram of 

gradient orientations is computed, wherein the orientations undergo quantization into bins. This 

histogram encapsulates the distribution of gradient orientations within the given cell. 

Subsequently, these cells are grouped into larger blocks, often comprising 2x2 or 3x3 cells, and 

normalization is applied within each block. This normalization step significantly enhances the 
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algorithm's robustness to changes in lighting conditions and contrast, contributing to its 

adaptability in diverse scenarios.  

 

The culmination of the HOG algorithm involves the formation of a comprehensive descriptor. 

The normalized histograms from all blocks are concatenated to construct the final HOG 

descriptor for the image. This descriptor serves as a powerful representation, capturing the 

spatial distribution of gradients and their orientations across the entire image. The resulting 

HOG descriptor provides a condensed yet rich characterization of the image's structural 

features, making it particularly well-suited for subsequent tasks such as object detection and 

image recognition.  

 

In essence, the Histogram of Oriented Gradients algorithm unfolds as a meticulous and 

systematic approach to feature extraction, leveraging the nuanced distribution of gradient 

orientations to distill complex visual data into a form that is both meaningful and conducive  

to diverse computer vision applications. [10] 

 

 

Figure 3: Steps involved when computing HOG 
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2.5.3 Cascade Classifier 

 
A Haar cascade classifier is a type of cascade classifier that is a machine learning object 

detection program, that identifies objects in images and videos through four stages: calculating 

Haar features, creating integral images for efficient computation, using Adaboost for feature 

selection and training, and implementing cascading classifiers for efficient detection. This 

algorithm necessitates a substantial dataset of positive and negative images for training. Haar 

features involve calculations on adjacent rectangular regions within a detection window. 

Integral images expedite these calculations by reducing operations, using sub-rectangles and 

array references. Adaboost selects and trains the best features, combining weak classifiers into 

strong classifiers. Cascading classifiers consist of stages with trained weak learners, quickly 

rejecting negatives. Minimizing the false negative rate is crucial for effective object detection, 

and Haar cascades, though effective, require careful hyperparameter tuning. [11] 

 

 

Figure 4: Process of Cascade Classifier  

 

2.5.4 Scale-Invariant Feature Transform (SIFT) 

 
Scale Invariant Feature Transform (SIFT), introduced by D. Lowe in 2004, stands as a pivotal 

feature extraction method in the realm of computer vision, specifically geared towards image 

matching and object detection applications. This algorithm operates on key terminologies such 

as Feature Extraction, which endeavors to reduce dataset features via a mapping function, Key 

Points that denote spatially invariant locations highlighting significant image pixels, and 

Descriptors, vectors delineating local surroundings around key points to establish associations 

between images. The inclusion of Gaussian Blur, a method adept at noise reduction in images, 

aids in efficient key point detection.  

 

The advantages of SIFT underscore its locality, ensuring resilience against noise and clutter, 

distinctiveness, enabling comparison with extensive datasets, quantity generation even from 
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diminutive objects, and noteworthy efficiency comparable to real-time performance. The 

execution of SIFT involves several stages, commencing with Building the Scale-Space. This 

entails applying Gaussian Blur to different scales of the original image, creating a multi-scale 

representation that mitigates scale dependency.  

 

The subsequent stage, the Difference of Gaussian (DoG), amplifies features by subtracting 

higher-blurred from lower-blurred versions, resulting in a set of images for each octave. Key 

Point Localization involves comparing pixel values in localities, classifying them as potential 

key points only if they exhibit local extremum characteristics. To refine the generated key 

points, criteria such as contrast and edge alignment are applied, yielding a set of legitimate key 

points. 

 

Orientation Assignment follows, involving the calculation of magnitude and orientation for 

each key point. Histograms are then created to represent orientation against magnitude, 

eliminating rotation and illumination dependencies. The final stage, Key Point Descriptor, 

involves forming a 16x16 grid around each key point, generating histograms for sub-blocks, 

and creating a feature vector. To eliminate rotation dependence, the gradient orientation 

difference is computed, while illumination dependency is mitigated through thresholding and 

normalization. 

 

The culmination of SIFT lies in Key Point Matching, where the extracted key points serve as 

robust elements for pattern matching in other images, underscoring the algorithm's significance 

in object detection and image matching domains. Through its intricate steps, SIFT provides a 

comprehensive and detailed methodology for feature extraction, contributing to the robustness 

and adaptability of computer vision systems. [12] 

 
Figure 5: SIFT algorithm overview 
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2.5.5 Local Binary Patterns (LBP) 

 
Recognizing faces is a complex task for computers due to various challenges such as 

illumination variation, low resolution, and occlusion. In the realm of computer-based face 

recognition, the Local Binary Pattern (LBP) algorithm has emerged as a noteworthy technique. 

First introduced in 1994, LBP combines statistical and structural methods to represent a facial 

image. The step-by-step architecture of LBP involves four key parameters: Neighbors (defining 

the number of samples to build the circular local binary pattern), Radius (representing the 

radius around the central pixel), Grid X (determining the number of cells in the horizontal 

direction), and Grid Y (specifying the number of cells in the vertical direction). 

 

The process begins with the training of the algorithm using a dataset containing facial images, 

each associated with a unique identifier. This identifier, whether a number or a name, plays a 

crucial role in the algorithm's ability to recognize individuals. During training, photos of the 

same person are assigned the same ID. Once trained, the LBP algorithm employs a sliding 

window concept based on the specified radius and neighbor parameters to create an 

intermediate image that accentuates facial characteristics. 

 

In practical terms, the grayscale image is divided into pixels, and a window (e.g., 3x3) is 

applied. This window is represented as a matrix, with the central pixel serving as the threshold 

value. The neighboring eight pixels are assigned binary values (1 if greater than the threshold, 

0 if less), resulting in a binary matrix. Converting this binary value into a decimal value yields 

the central pixel's new intensity value, creating an image that better captures the original's 

features. 

 

Following this, the Grid X and Grid Y parameters are employed to divide the image into 

multiple grids. As the generated image is grayscale, each pixel possesses a histogram with 256 

positions. Concatenating these histograms produces a more comprehensive final histogram that 

accurately represents the characteristics of the original image. This final histogram, a unique 

signature for each image, facilitates the face recognition process. 

 

In the face recognition stage, the trained algorithm utilizes the generated histograms from the 

training dataset to represent each image. When presented with a new input image, the algorithm 

repeats the process, creating a histogram that encapsulates its distinctive features. By 
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comparing this histogram with those from the training dataset, the algorithm identifies and 

recognizes the individual depicted in the input image, showcasing the efficacy of the Local 

Binary Pattern algorithm in tackling the complexities of facial recognition in computer vision. 

[15] 

 

 

Figure 6: Applying LBP operation 

 

 

 

Figure 7: Extracting histograms 

   

2.6 Face recognition techniques  

 
Face recognition, also known as facial recognition, is a computer vision and biometric 

technology that involves identifying and verifying individuals based on their facial features. 

Unlike face detection, which focuses on locating faces in images or videos, face recognition 

goes a step further by associating the detected faces with specific individuals. 

 

Face recognition serves two primary purposes which are identification and verification. It 

determines the identity of an individual by comparing their face to a database of known faces. 

Besides, it also verifies whether the person claiming to be a specific individual matches the 

stored reference face. In addition, face recognition systems analyze and extract facial features, 

such as the distance between the eyes, the shape of the nose, and the arrangement of facial 

landmarks such as eyes, nose, and mouth. These features are used to create a unique face 

template or facial signature for each individual.  
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However, face recognition systems must deal with variations in lighting, pose, facial 

expressions, and occlusions. There are various types of advanced algorithms are designed to 

handle these challenges including traditional methods such as eigenfaces, as well as deep 

learning-based approaches using convolutional neural networks (CNNs). Notable deep 

learning models for face recognition include FaceNet and VGGFace. [16] 

 

2.6.1 Eigenfaces 

 
Eigenfaces, a representation learning method within the realm of computer vision with a 

specific focus on facial images, operates on the premise of expressing a facial image as a linear 

combination of fundamental images termed eigenfaces. The crux of eigenfaces lies in the 

ability to discern optimal eigenfaces, thereby enabling the representation of any facial image 

through a linear combination of these fundamental components.  

 

To embark on the journey of computing eigenfaces, a substantial set of facial images serves as 

the training dataset. A pivotal pre-processing step involves aligning facial features such as eyes, 

nose, and mouth, coupled with normalizing lightness and pose. This strategic pre-processing 

ensures that the algorithm can concentrate on the regions of the image pertinent to appearance, 

discarding irrelevant facial elements. Subsequently, the images undergo transformation into 

feature vectors encoding visual information. The covariance matrix of these vectors reveals 

correlations among various facial features, forming the basis for deriving eigenfaces. 

 

The algorithm delves into the computation of eigenvectors from the covariance matrix, defining 

the latent space encapsulating facial variations. These eigenvectors then serve as the 

foundational images for the eigenface representation of subsequent test facial images. The 

training pipeline involves this intricate process, as illustrated in the provided diagram. 

 

In the test phase, a new facial image undergoes transformation into a feature vector, followed 

by projection into the space defined by the eigenvectors. The resulting projection coefficients 

offer a concise representation of the face as a linear combination of the eigenfaces, as depicted 

in the corresponding diagram. 
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Eigenfaces boast several advantages, notably their efficiency and compactness. The 

coefficients derived from the eigenvectors are minimal, capturing the essential facial variations, 

facilitating the representation of new images using a sparse set of numbers. This efficiency 

proves valuable in diverse applications like search engines and security systems. Furthermore, 

eigenfaces exhibit robustness to lighting and pose variations, a critical attribute in classification 

tasks. 

 

However, the method of eigenfaces is not without limitations. Its simplicity is accompanied by 

a dependence on the quality of the training set, rendering it less robust in representing a broad 

spectrum of facial images. The method excels in portraying faces akin to those in the training 

set, urging the need for a diverse training dataset to account for this inherent characteristic. 

Despite these limitations, the efficiency and compactness of eigenfaces position them as 

valuable tools in various facial recognition applications. [17] 

 

  

  

Figure 8: Training pipeline of eigenfaces 

 

 

 

 
Figure 9: Test pipeline of eigenfaces 

 

 
Figure 10: Example of an image represented as linear combinations of eigenfaces 
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2.6.2 Fisherfaces (Linear Discriminant Analysis) 

 
In this comprehensive exploration, we delve into the intricacies of FisherFaces, an advanced 

technique for face recognition that builds upon the foundation laid by EigenFaces. FisherFaces 

leverages the combined power of Principal Component Analysis (PCA) and Linear 

Discriminant Analysis (LDA) to enhance the accuracy and robustness of facial recognition 

systems. The overarching steps in face recognition, including capturing, feature extraction, and 

comparison, are outlined as the fundamental stages of this process. 

 

OpenCV, a powerful computer vision library, provides three built-in face recognizers, namely 

EigenFaces, FisherFaces, and Local Binary Patterns Histograms (LBPH). Our focus in this 

article centers on FisherFaces, recognizing it as an improvement over EigenFaces. Before 

delving into FisherFaces, a brief background on EigenFaces elucidates its algorithmic 

approach. EigenFaces operates on the premise that not all parts of a face are equally crucial for 

recognition, emphasizing regions of maximum variation, such as those between the nose and 

eyes. 

 

However, EigenFaces exhibits limitations, particularly in handling illumination as a significant 

feature, leading to potential inaccuracies. To address these shortcomings, the article introduces 

FisherFaces as an evolved version of the EigenFaces algorithm. FisherFaces acknowledges the 

significance of illumination variations and strives to extract individual features separately, 

preventing one person's facial data from unduly affecting others. 

 

The FisherFaces algorithm, in essence, extracts principal components that distinguish one 

individual from another. By employing Fisher Linear Discriminant (FLD) or Linear 

Discriminant Analysis (LDA), it seeks to model the differences between classes, enhancing the 

separation between individuals in the feature space. LDA, a dimensionality reduction 

technique, aims to maximize the ratio of between-class scatter matrix to within-class scatter 

matrix, exhibiting resilience to varying illumination conditions.  

 

The FisherFaces algorithm proves advantageous in not explicitly capturing illumination 

variations, offering a more refined approach compared to EigenFaces. Its core algorithmic steps 

involve calculating scatter matrices, seeking a projection matrix to maximize class separability, 

and solving the General Eigenvalue Problem to derive transformation matrices. Pseudocode 
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provides a structured representation of the FisherFaces algorithm, emphasizing its 

implementation details.  

 

To exemplify the application of FisherFaces, the article introduces the 'Yale Face Database' for 

training, featuring grayscale images with varying facial poses. The process involves data 

retrieval, image processing encompassing preprocessing and feature generation, and, finally, 

the recognition process. The recognition phase hinges on successfully matching test images 

with their corresponding training images, with the system exhibiting varying degrees of 

accuracy based on the similarity between the two. In cases where the training and testing 

images correspond, the system achieves a 100% recognition rate, while in scenarios where the 

images differ but belong to the same person, recognition rates of up to 90% are attained. 

 

In summary, FisherFaces emerges as a sophisticated solution, addressing the limitations of 

EigenFaces in facial recognition. Its nuanced approach to feature extraction and recognition 

positions it as a valuable tool in computer vision applications, particularly in scenarios with 

varying illumination conditions and diverse datasets. [18] 

 

2.6.3 Local Feature-Based Methods (SURF) 

 
The Speeded Up Robust Features (SURF) method represents a significant advancement in the 

realm of image feature detection and matching, renowned for its speed and robustness. This 

algorithm, introduced in the Ph.D. thesis of H. Bay at ETH Zurich in 2009, builds upon the 

principles of Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA). 

The primary focus of SURF is on providing a quick and accurate means of generating local, 

similarity-invariant representations for images, facilitating real-time applications like object 

recognition and tracking. 

 

The SURF framework comprises two fundamental steps: feature extraction and feature 

description. In the feature extraction phase, interest points are detected using a Hessian matrix 

approximation. Integral images, introduced in 1984, play a crucial role in the computation of 

box-type convolution filters, enabling fast and efficient calculations of pixel value sums within 

rectangular regions. The Hessian matrix-based interest point selection relies on the determinant 

of the Hessian matrix, integrating information about both location and scale. Despite 
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discretization and cropping limitations associated with Gaussian filters, SURF overcomes these 

challenges by employing box filters and maintaining fast convolution capabilities. 

 

Scale-space representation, a common implementation in image pyramids, is achieved 

differently in SURF. The algorithm, leveraging box filters and integral images, foregoes 

iterative filtering and applies filters of varying sizes directly to the original image. This unique 

approach allows for parallel processing and efficient up-scaling of filter sizes without the need 

for iterative image size reduction. The feature extraction step involves non-maximum 

suppression in a 3×3×3 neighborhood to localize interest points across the image and scales. 

 

Moving to feature description, SURF's creation of descriptors occurs in two distinct steps. The 

first step involves determining a reproducible orientation for the interest points by calculating 

Haar-wavelet responses in both x and y directions within a circular neighborhood around the 

keypoint. The orientation with the maximum sum of responses is chosen as the main 

orientation. The second step entails constructing a square region centered around the keypoint 

and aligned with the chosen orientation. This region is divided into smaller sub-regions, and 

for each sub-region, simple features are computed at regularly spaced sample points. The 

responses are weighted with a Gaussian to enhance robustness, and the resulting descriptor 

vector captures the intensity structure of each sub-region. 

 

In essence, SURF's prowess lies in its ability to achieve speed and robustness through 

innovative techniques such as box filters, integral images, and parallel processing. This method 

significantly improves computation efficiency while maintaining accuracy, making it a 

valuable tool in various computer vision applications. [20] 

 
 

 
Figure 11: Gaussian partial derivative in xy 
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Figure 12: Gaussian partial derivative in y 

 

 

2.6.4 Facial Landmark-Based Methods 

 
Facial landmark detection algorithms play a pivotal role in automatically pinpointing key facial 

landmark points, such as the nose tip, eye corners, eyebrows, and chin tip, within facial images 

or videos. These algorithms find application in a variety of tasks, including face swap, head 

pose detection, detecting facial gestures, and gaze direction determination. The process of 

landmark detection involves two primary steps: face detection and landmark detection within 

the identified face bounding rectangle. 

 

These algorithms are categorized based on facial appearance and shape patterns into three 

major types: holistic methods, Constrained Local Model (CLM) methods, and regression-based 

methods. Holistic methods explicitly model overall facial appearance and global facial shape 

patterns, while CLMs rely on local facial appearance and global shape patterns. Regression-

based methods use holistic or local appearance information and may implicitly embed global 

facial shape patterns for joint landmark detection. Recent advancements involve combining 

deep learning models with global 3D shape models for more accurate landmark detection. 

 

Several popular models are employed for facial landmark detection, with notable examples 

being the FacemarkLBF model from OpenCV, Dlib model, MTCNN model (Multi-task 

Cascaded Convolutional Networks), and the Mediapipe model developed by Google. The 

FacemarkLBF model returns 68 landmarks for each detected face, facilitating tasks such as 

face alignment and feature localization. Dlib offers a pre-built model, 

shape_predictor_68_facemarks.dat, providing 68 feature points. MTCNN, a deep learning 

architecture, employs cascaded convolutional networks for both face detection and landmark 
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localization, detecting five key facial landmarks. Mediapipe, developed by Google, uses a 

holistic model to detect face and hand landmarks, providing 468 face landmarks along with 

hand landmarks. 

 

Despite the progress in facial landmark detection, challenges persist due to factors such as 

diverse facial expressions, varying head poses, environmental conditions like illumination 

changes, and occlusion by other objects. Ongoing research endeavors aim to address these 

challenges and further enhance the accuracy and robustness of facial detection and landmark 

localization algorithms. As the field continues to evolve, the quest for a model that excels in 

performance across diverse conditions remains an active area of exploration. [21] 

 

  

 
Figure 13: DLib landmark points on face.  

 

 

 
Figure 14: MTCNN architecture 
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Figure 15: Landmark detection using MTCNN 

 

 

 
Figure 16: Mediapipe face landmark detection 
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2.6.5 3D Face Recognition 

 
In the contemporary era where our lives are intricately interwoven with digital platforms, the 

imperative of safeguarding personal information has never been more pronounced. With 

projections estimating cybercrime to cost the world $6 trillion annually by 2021, conventional 

security measures like passwords and PINs are proving insufficient. The protection of sensitive 

information and personal identities has become paramount, underscored by the escalating 

incidences of identity fraud and spoof attacks. In response to these challenges, 3D face 

recognition emerges as a transformative technology in the realm of digital security. 

 

Three-dimensional face recognition, also referred to as 3D facial recognition, stands out as an 

innovative method within the broader landscape of facial recognition. It leverages the inherent 

3D structure of the human face to establish a definitive identity, setting it apart from traditional 

2D approaches. Unlike 2D methods, 3D face recognition involves a meticulous process of 3D 

face reconstruction, introducing a heightened level of accuracy and performance that even 

surpasses fingerprint recognition. 

 

Consider the unique facial features such as ridges, nose bridges, and indentations. While 2D 

images may capture facial patterns, they fall short in representing these depth-related 

intricacies. The efficacy of the 3D face recognition system hinges on its adept utilization of 

data. Researchers employ 3D face scans and extensive databases to craft detailed 3D face 

models capable of sophisticated pattern analysis, encapsulating intricate facial details like 

lighting conditions, poses, and expressions. 

 

The superiority of 3D face recognition over its 2D counterpart is rooted in its prowess in pattern 

recognition, capturing and analyzing the depth of the human face. Unlike 2D methods reliant 

on flat images, 3D face recognition utilizes a comprehensive 3D face model, thereby 

capitalizing on the intrinsic 3D geometry of the human face. This approach provides a 

formidable defense against challenges such as changing lighting conditions, diverse facial 

expressions, and varying head angles. 

 

Central to the success of 3D face recognition is the pivotal role played by artificial intelligence 

(AI). Advanced algorithms conduct intricate pattern analysis on the 3D facial data, ensuring 

robust recognition even amidst variations in pose and changes in illumination. A noteworthy 
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study from the University of York underscores the substantial improvement in facial 

recognition results achieved through 3D models compared to 2D images. The amalgamation 

of depth analysis and AI algorithms renders the system highly adaptable and accurate. 

 

Imagine a scenario involving twins with nearly identical facial features attempting to access a 

security system. While a 2D system might falter due to their striking resemblances, 3D face 

recognition discerns between subtle facial depth differences, ensuring correct identification. 

 

The operational workflow of 3D face recognition encompasses face detection, facial landmarks 

identification, feature extraction, and verification. From capturing 3D facial data and analyzing 

depth and curvature features to mapping every facial detail into a digital signature for 

verification, the process is swift and secure. In scenarios such as airport security equipped with 

3D face recognition, a traveler's identity is seamlessly validated by cross-referencing it with 

global databases in milliseconds. 

 

The transition from 2D to 3D face recognition signifies a seismic shift in authentication 

accuracy. Unlike 2D approaches reliant solely on visual characteristics, 3D face reconstruction 

employs the intricate geometry of the face for identification, resulting in enhanced accuracy. 

This shift brings forth a multitude of benefits, including resilience to spoofing, improved 

robustness in challenging conditions, and the strength of 3D liveness detection. 

 

Facial recognition, while powerful, is not foolproof, with sophisticated cyber-attacks using 

high-resolution photos or videos occasionally tricking systems. Here, the strength of 3D 

liveness detection becomes pivotal. By adding an extra layer of facial geometry and monitoring 

real-time presence, it ensures interactions with a real, live human, thwarting attempts based on 

photographs or videos. 

 

In real-world applications, 3D face recognition finds substantial utility across diverse sectors. 

In the financial sector, banks like HSBC streamline authentication processes and reduce 

fraudulent access attempts using facial recognition. In e-commerce and retail, exemplified by 

Amazon's Go stores, 3D facial recognition enhances frictionless shopping experiences, 

ensuring accurate billing without manual intervention. Moreover, in aviation, airports like 

Changi in Singapore lead the way by pioneering facial recognition for smoother boarding 

processes, ensuring the person boarding is the rightful ticket holder. 



27 

 

When considering a partner for facial recognition surveillance, FACIA emerges as a leader in 

implementing biometric solutions for enhanced security. The seamless integration of face 

recognition with 3D liveness detection ensures the authenticity of users' identities. Their 

solutions, driven by artificial intelligence, encompass AI-powered facial recognition, liveness 

detection with 3D face search capabilities, and next-generation face-matching technology 

offering 1:1 face matching and 1:N face verification, age verification, and on-premises 

solutions for various sectors. 

 

As we gaze into the future, security, in the era of digital transformation, transcends luxury to 

become a necessity. Significant investments by entities ranging from Apple to national 

governments underscore the prominence of 3D face recognition in the convergence of 

technology and security. The synergy of face recognition and 3D liveness detection offers 

robust protection in a dynamic landscape. FACIA leads the way, providing tools to confidently 

navigate this new territory and ensure uncompromising security. 

 

In conclusion, the challenges posed by the digital age are myriad, but with tools like 3D face 

recognition, we're not merely reacting to threats; we're preempting them. Standing on this 

technological precipice prompts not a question of whether to adopt such technologies, but 

rather how soon we can integrate them. FACIA's infusion of AI-driven solutions, including 3D 

face recognition and liveness detection, offers innovative solutions that resonate across sectors, 

reflecting a proactive stance in addressing the multifaceted challenges of the digital age. [22] 

 

 

Figure 17: 3D face model 
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2.6.6 Multimodal (Fusion) Approaches 

 
In recent years, machine learning algorithms, particularly neural networks, have gained 

substantial prominence owing to their remarkable accuracy in training models. Neural 

networks, inspired by the human brain, have become a focal point in both academic research 

and industrial applications due to their superior performance within a single domain dataset. 

However, contemporary research is increasingly delving into the realm of multimodal input 

data, marking a shift from unimodal datasets. Multimodality, as defined by Lahal et al. [3], 

involves systems observed by multiple sensors. The primary objective of leveraging 

multimodality is to extract and amalgamate essential information from individual sensors, 

creating a composite feature set to address a given problem. This approach aims to endow the 

output with a richer representation and enhanced performance compared to individual 

modalities. Multimodal data analysis finds practical applications across diverse fields such as 

medicine, business, driverless technology, and gaming, where common remote sensing devices 

like cameras, LIDAR, radar, and ultrasonic sensors are frequently fused [4]. 

 

In the realm of multimodal data fusion, three distinct techniques are commonly employed [5] 

[6]. The first technique is early fusion or data-level fusion, a traditional method that involves 

combining multiple datasets before analysis. Early fusion, also known as input-level fusion, 

poses challenges related to data pre-processing, synchronization of data sources with varying 

sampling rates, and assumptions of conditional independence between data sources. The 

process entails either removing the correlation between sensors or fusing data at a lower-

dimensional common space, facilitated by statistical methods such as principal component 

analysis (PCA) and canonical correlation analysis. Despite its historical significance, early 

fusion has drawbacks, including a substantial reduction in data volume and the complexity of 

synchronizing timestamps across modalities. 

 

Conversely, the second technique, late fusion or decision-level fusion, operates by 

independently using data sources and subsequently fusing them during the decision-making 

stage. Inspired by ensemble classifiers, late fusion proves advantageous when dealing with 

significantly varied data sources in terms of sampling rate, data dimensionality, and 

measurement units. Late fusion often outperforms early fusion, particularly as errors from 

multiple models are treated independently, mitigating correlated errors. However, debates 

persist regarding whether late fusion consistently surpasses early fusion in performance. 
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Various rules, such as Bayes rules, max-fusion, and average-fusion, guide the optimal 

combination of independently trained models. 

 

The third technique, intermediate fusion, aligns with the architecture of deep neural networks. 

This method stands out as the most flexible, allowing data fusion at different stages of model 

training. Intermediate fusion involves transforming input data into a higher-level representation 

through multiple layers, incorporating both linear and nonlinear functions. In the context of 

deep learning multimodal fusion, intermediate fusion entails merging representations of 

different modalities into a shared representation layer, facilitating the learning of a joint 

representation. This fusion can occur simultaneously or gradually, utilizing different modalities 

at different stages of the model. Unlike early and late fusion, intermediate fusion provides the 

flexibility to fuse features at various depths, enhancing adaptability. Dimensionality reduction 

techniques, such as principal component analysis (PCA) and autoencoders, are often employed 

to optimize performance and prevent overfitting. 

 

Research efforts, exemplified by Karpathy et al. [18], explore "slow-fusion" networks, 

gradually fusing features across multiple layers for improved performance in video stream 

classification problems. Similarly, progressive fusion methods, as proposed by other studies 

[19], prioritize highly correlated input modalities before gradually incorporating less correlated 

ones. These approaches showcase state-of-the-art performance, especially in complex tasks 

like communicative gesture recognition. In essence, multimodal data fusion techniques play a 

pivotal role in addressing the intricacies of diverse datasets, offering a spectrum of strategies 

to enhance the robustness and adaptability of machine learning models across various 

applications. [23] 
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Figure 18: Early fusion or data-level fusion 

 

 

 
Figure 19: Late fusion or decision fusion 

 

 
Figure 20: Intermediate fusion 
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2.7 Existing Project Methodology  

 
This section studies the existing project methodology that has been proposed by the others for 

facial recognition applications with brief explanation.  

 

The first project starts from “Multi-face recognition for the detection of prisoners in jail using 

a modified cascade classifier and CNN” proposed by IGSM Diyasa, A Fauzi, M Idhom, and A 

Setiawan in 2021. They introduced a method that combines deep neural networks that are 

Convolutional Neural Networks (CNN) and Haar Cascade Classifier as real-time applications 

to solve the difficulty of classification problems. This method is implemented with the guide 

of the OpenCV library for multi-face detection and 5MP CCTV camera devices. Furthermore, 

this method has been proven to be very efficient in face classification since its facial recognition 

system performance achieves an 87% accuracy rate. [24] 

 

The second project continues to “Multi-face recognition process using Haar Cascade and 

Eigenface methods.” This method was proposed by Teddy Mantoro*, Media A.Ayu, and 

Suhendi in 2018. The proposed face recognition process was done using a hybrid process of 

Haar Cascade and Eigenface methods which can detect multiple faces in a single detection 

process. This facial recognition system can detect 55 individuals in a single detection process. 

This improved face recognition approach was able to recognize multiple faces with a 91.67% 

accuracy level. [25] 

 

The third project title is “University Classroom Attendance System Using FaceNet and Support 

Vector Machine” which was proposed by Thida Nyein and Aung Nway Oo in 2019. This 

attendance system provides multi-face recognition with the combination of FaceNet and 

Support Vector Machine (SVM). In this proposed system, FaceNet is used for feature 

extraction by embedding 128 dimensions per face and SVM is used to classify the given 

training data with the extracted feature of FaceNet. The experimental result shows that the 

proposed approach with an accuracy of 98.66% within 55 students detection in a classroom. 

[26] 
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2.8 Summary 

 
This section summarizes and compares the advantage and disadvantage of various types of face 

detection techniques and face recognition techniques in a table. Besides, this section also 

provides the comparison of existing methodology in a table from different aspects.   

 

Technique 

type 

Advantage Disadvantage 

Viola-Jones 

Algorithm 

Fast, computationally efficient, 

works well for detecting frontal 

faces, suitable for real-time 

applications 

Sensitive to variations in lighting 

conditions, limited accuracy, 

requires training phase for 

classifier creation 

Histogram of 

Oriented 

Gradients 

(HOG) 

Effective, robust to variations in 

lighting and orientation, can used in 

combination between SVM for 

improved accuracy 

Requires additional techniques for 

precise facial feature localization, 

may produce false positives in 

complex scenes, computationally 

intensive in high resolution 

images 

Deep 

learning 

(CNN) 

Achieves state-of-the-art accuracy, 

can handle various poses, 

expressions, occlusions, support 

end-to-end training for feature 

extraction and classification 

  

Requires large datasets for 

training, demanding resource-

limited devices, prone to 

overfitting with limited data 

Cascade 

classifier (eg: 

OpenCV 

Haar 

Cascades) 

Efficient, suitable for real-time 

applications, can be trained for 

specific objects, well-suited for 

resource-constrained devices 

Less accurate compared to deep 

learning model, may produce false 

positives in cluttered scene, 

limited adaptability to complex 

scenarios  

Scale-

Invariant 

Feature 

Transform 

(SIFT) 

Robust to scale, rotation, affine 

transformations, effective for 

detecting faces under various 

conditions, can be combined with 

other techniques for improved 

accuracy 

Slower and less suitable for real-

time applications, sensitive to 

changes in viewpoint and 

occlusions, may require additional 

post-processing for face 

localization 

Local Binary 

Patterns 

(LBP) 

Efficient, lightweight, robust to the 

changes in lighting conditions, 

suitable for resource-constrained 

devices 

Limited accuracy in complex 

scenes and under extreme 

variations, may struggle with 

occluded and non-frontal face, 

limited feature representation for 

detailed face analysis 

Table 3: Comparison table between various face detection techniques 
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Technique type Advantage Disadvantage 

Eigenfaces Simple, efficient, effective for 

small to medium-sized 

databases, low memory 

requirements 

Limited to variations in lighting and 

pose, less accurate with significant 

variations in face expressions, 

requires feature extraction and 

dimensionality reduction 

Fisherfaces 

(Linear 

Discriminant 

Analysis) 

Discriminative feature 

extraction, suitable for face 

recognition, handles within-

class variability effectively, 

can be combined with other 

techniques for improved 

accuracy 

Sensitive to variations in 

illumination and pose, requires 

relatively large dataset for training, 

limited robustness to extreme 

variations 

Local Binary 

Patterns (LBP) 

Efficient, lightweight, robust 

to the changes in lighting 

conditions, suitable for 

resource-constrained devices 

Limited accuracy in complex scenes 

and under extreme variations, may 

struggle with occluded and non-

frontal face, limited feature 

representation for detailed face 

analysis 

Deep learning 

(CNN) 

Achieves state-of-the-art 

accuracy, can handle various 

poses, expressions, occlusions, 

support end-to-end training for 

feature extraction and 

classification 

Requires large datasets for training, 

demanding resource-limited 

devices, prone to overfitting with 

limited data 

Local Feature-

Based Methods 

(SIFT, SURF) 

Robust to scale, rotation, affine 

transformations, effective for 

detecting faces under various 

conditions, can be combined 

with other techniques for 

improved accuracy 

Slower and less suitable for real-

time applications, sensitive to 

changes in viewpoint and 

occlusions, may require additional 

post-processing for face localization 

Facial 

Landmark-

Based Methods 

Effective for precise face 

alignment and feature 

localization, enables accurate 

pose estimation and facial 

expression analysis, useful in 

combination with other 

techniques for enhanced 

accuracy 

May not be suitable for full-scale 

face recognition on its own, relies 

on accurate landmark detection, 

intensive for real-time applications 
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3D face 

recognition 

Provides depth information, 

effective in distinguishing 

identical twins and similar-

looking individuals, less 

susceptible to variations in 

lighting and 2D photo spoofing 

Requires specialized hardware, 

limited availability of 3D facial 

data, increased complexity 

Multimodal 

(Fusion) 

Approaches 

Combines multiple techniques 

for improved accuracy, 

provides redundancy and 

robustness, useful for 

applications with stringent 

security requirements 

Increased complexity, more 

complex to maintain and 

implement, requires synchronized 

data from different modules, 

increased computational and storage 

requirements 

Table 4: Comparison table between various face recognition techniques 

 

 

Author name Feature, Method & Applications Accuracy 

I G S M Diyasa, A 

Fauzi, M Idhom 

and A Setiawan  

(2021) 

❖ Modified Cascade Classifier and CNN 

❖ Application: Multi-face recognition for the 

detection of prisoners in jail 

87.1% 

Teddy Mantoro* 

Media A. Ayu 

Suhendi 

(2018) 

❖ Multi-face recognition process using Haar 

Cascades and Eigenface methods 

❖ Application: Multi-face recognition 

91.67% 

Thida Nyein  

Aung Nway Oo 

❖ FaceNet and Support Vector Machine (SVM) 

❖ Application: University classroom attendance 

system 

98.66 

Table 5: Comparison table between existing methodologies 
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3- Methodology 

 
3.1 Overall System Design 

 

 
Figure 21: Overall system block diagram 

 

The figure above illustrates the overall design of the facial recognition system. The input of the 

system is the image of students captured by a smartphone in real-time. The process is separated 

into many key components: web interface, Flask server, image storage, image processor, face 

recognition engine, database, and data logger. The output of the system is an updated 

attendance tracking record of the students in an Excel file. A detailed explanation of the overall 

system working is provided below. 

 

The web interface serves as the primary access point for users, such as instructors to interact 

with the system. Users can capture images of students who are present in the classroom in real 

time using a smartphone through this interface. The interface facilitates the connection to the 

Flask server, allowing for the upload of captured images and the retrieval of updated attendance 

records. It ensures that users can easily manage and monitor attendance without needing direct 

access to the backend process.  

 

Next, the Flask server acts as the central hub for the system, managing routes and handling 

HTTP requests. The Flask server receives this image and routes it to the appropriate 

components when an image is captured and uploaded via the web interface. It first directs the 

image to image storage for temporary holding. Additionally, the Flask server manages data 

flow between various components, ensuring seamless operation and integration of the system. 
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After that, image storage is the place that temporarily holds the images that are captured and 

uploaded through the Flask server. It provides a structured location for storing these images 

before they are processed. Moreover, image storage also ensures that images are readily 

available for the next stage of processing by acting as a buffer. Thus, this will maintain the 

efficiency and organization of the data flow within the system. 

 

Afterward, the image processor will retrieve stored images from the image storage and perform 

necessary pre-processing tasks. The image processor detects and localizes multiple faces within 

each image using libraries including OpenCV and dlib. This pre-processing step includes 

resizing and normalizing the images to prepare them for accurate face recognition. The image 

processor is crucial for ensuring that the images are in the correct format and quality for 

subsequent recognition tasks. 

 

Hereafter, the face recognition engine is responsible for identifying the faces detected by the 

image processor. Leveraging advanced neural networks like CNN (Convolutional Neural 

Networks) and ResNet (Redisual Networks), the engine compares the detected faces with a 

database of known face descriptors. This stage involves feature extraction and matching, where 

the unique features of each face are identified and compared to existing records are determine 

the identity of each student. 

 

Apart from that, the database component stores the face descriptors and other necessary data 

for face recognition. The face recognition engine retrieves the corresponding face descriptor 

from the database for comparison when it identifies a face from the images. Additionally, new 

face descriptors can be added to the database as needed. In other words, the database is crucial 

for maintaining an up-to-date repository of face descriptors that the system can reference during 

the recognition process. 

 

From there on, the data logger logs the results of the recognition process, including recognized 

faces and timestamps. It provides a record of the recognition events, which can be used for 

auditing and tracking purposes.  
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Lastly, the final stage of the system is updating the attendance records. Based on the recognition 

results logged by the data logger, the facial recognition system will then update the attendance 

records in an Excel file after completing the recognition process. This file serves as the official 

record of student attendance, which instructors can access and manage through the web 

interface. The real-time update of attendance records ensures that the system provides accurate 

and current data to educational institutions.  

 

3.2 Hardware Design 

 

 
Figure 22: System hardware design 

 

The figure above shows the conceptual hardware design of the project. The hardware used in 

this project is a smartphone, a laptop, and a Wi-Fi router. The purpose of using the router is to 

provide a Wi-Fi network and enable wireless communication between smartphone and laptop 

at the same time. The camera on the smartphone serves as an input source since it is used to 

capture images of the students. After the image is taken, the photo is sent to the laptop over the 

Wi-Fi network, triggering the program. The laptop is used to run the backend program which 

is our facial recognition system implemented in Python using OpenCV. Moreover, the laptop 

also acts as the main development tool in the project since it is used to write the code and debug 

the program. The primary functions of the laptop in this project are receiving images, 

processing images, rendering confirmation, executing the facial recognition program, storing 

and logging recognition results, and saving it into an Excel spreadsheet.  
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3.3 Software Design 

In this project, the software design is divided into three main scripts, each responsible for 

different aspects of the facial recognition system. These scripts include “Flask.py” for handling 

web server functionalities, “feature_extraction.py” for extracting facial features from images, 

and “face_recognize.py” for processing images and performing face recognition. This section 

provides a detailed explanation of the responsibilities, key functions, and interactions of these 

scripts. Furthermore, the face detection algorithm, face recognition algorithm, and data 

interfacing also will be discussed in this section. 

 

3.3.1 Flask Web Server (“Flask.py”) 

 
 

 

Figure 23: Web Framework for Python 

 

The “Flask.py” script uses the Flask framework to create a simple web server that provides file 

uploads, processes the uploaded images, and provides feedback to the user through a response 

page. This script comprises three main functionalities: file upload interface, file processing, 

and response page. Firstly, the file upload interface provides a user-friendly web page where 

users can upload images for processing. Users can select and upload multiple files at once, 

making the process efficient and straightforward. The Flask application initializes the 

necessary configurations to handle these file uploads. 
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3.3.2 Feature Extraction (“feature extraction.py”) 

 

 
Figure 24: Dlib + OpenCV 

 

The “feature_extraction.py” script focused on extracting and storing facial features data. The 

primary purpose of this script is to handle the extraction of facial features from detected faces 

using pre-trained models from the “dlib” library. The process involves identifying key 

landmarks on the face and computing a high-dimensional feature vector (or descriptor) that 

uniquely represents the facial characteristics of each individual. These feature vectors are then 

stored in a structured format which is a CSV file, for easy access and manipulation. By 

organizing the extracted data in a CSV file, the system ensures that it can efficiently retrieve 

and compare facial features during the recognition process, facilitating accurate and reliable 

identification of individuals. 

 

3.3.3 Image Processing and Face Recognition (“face recognize.py”) 
 

 

Figure 25: Face Recognition 

 

The face_recognize.py script utilizes several key technologies and libraries to perform face 

detection and recognition. It employs OpenCV for general image processing tasks and dlib for 

specialized functions such as CNN-based face detection and recognition. The script uses three 

primary models: the mmod_human_face_detector, a pre-trained dlib CNN model for detecting 

faces; the shape_predictor_68_face_landmarks model for identifying key points on each 
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detected face; and the dlib_face_recognition_resnet_model_v1 model for extracting facial 

features and generating unique descriptors for each face. These models work together to detect 

faces, identify landmarks, and create descriptors that are used for comparison and recognition. 

 

Despite its effectiveness, the system has a notable limitation: it is unable to detect masked 

persons because the models selected rely heavily on facial landmarks that are typically 

obscured by masks. When masks cover significant portions of the face, such as the nose and 

mouth, the model's ability to identify and verify individuals is significantly reduced. 

 

The script's functionality includes loading a face database from a CSV file containing known 

face descriptors and associated metadata (names and IDs), and performing detection and 

recognition by resizing images, detecting faces, checking confidence levels, extracting features 

using facial landmarks, and matching these against known descriptors for identification. 

Additionally, the script prompts the user to key in additional information such as the course 

code, subject name, instructor name, and any remarks. This information is then associated with 

the recognized faces and stored alongside the recognition results. 

 

3.3.4 Image Pre-Processing  
 

Before an image is fed into the face detection algorithm, it must undergo a series of image 

processing steps designated to enhance the effectiveness of detection by standardizing the 

image. The pre-processing steps used include:  

 

Steps Description 

Image Loading ➢ The image is read from the file system using OpenCV’s 

“cv2.imread()”   

➢ This step converts the image file into a format that can be 

manipulated by the OpenCV library 

➢ It is the initial step that brings the image data into the 

processing pipeline 

Initial Image 

Resizing 

➢ The loaded image is resized into a smaller dimension using a 

custom “resize_image” function 
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➢ This function scales the image by a specified percentage 

(50% in this case) 

➢ Resizing images helps to standardize the input dimensions, 

and reduce computational load, making subsequent 

operations faster and more efficient 

Further Resizing for 

Face Detection 

➢ The resized image is further scaled by a factor of 2 

➢ This additional resizing is applied using OpenCV’s 

“cv2.resize()” function 

➢ This step improves the accuracy of face detection 

➢ Scaling the image up helps in detecting smaller faces that 

might not be detected at lower resolutions 

Table 6: Image pre-processing steps and description 

 

The following images show the sequence and output of each step based on a given sample face 

image and the proof that has shown the dimension image has been increased with a similar 

appearance.  
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Figure 26: Image after pre-processing 

 

3.3.5 Face Detection Algorithm 

 
The face detection technique used in this project is based on a Convolutional Neural Network 

(CNN) model provided by the dlib library, utilizing the pre-trained model 

“mmod_human_face_detector.dat”. This CNN model is designed to detect human faces with 

high accuracy and robustness. The process begins by loading the CNN face detection model, 

using dlib’s “cnn_face_detection_model_v1” class. This model, specifically trained for 

detecting human faces, is recognized for its effectiveness in various conditions. 

 

 

 

Figure 27: Example of CNN-based face detection using dlib 
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Before the image is processed by the detection algorithm, it undergoes a series of pre-

processing steps to enhance detection accuracy. The initial step involves resizing the input 

image to standardize the dimensions and reduce computational load. The resized image, which 

is scaled by a factor of 2, is then passed to the CNN face detector. The detector returns a list of 

detected faces along with their confidence scores, where each face is represented by a rectangle 

indicating its coordinates within the image.  

 

Detected faces are filtered based on their confidence scores, ensuring only faces with a 

confidence score above a certain threshold (0.5 in this case) are considered for further 

processing. This step is crucial in reducing the number of false positives. For each face that 

passes this confidence check, the script predicts 68 facial landmarks using another pre-trained 

dlib model, “shape_predictor_68_face_landmarks.dat”. These landmarks are key points on the 

face that are used for further processing. 

 

 

Figure 28: Example of detected facial landmarks on faces 

 

The identified facial landmarks are then used to compute a 128-dimensional descriptor for each 

detected face using the dlib face recognition model,“dlib_face_recognition_resnet_model_v1”. 

This descriptor is a compact representation of the face's features and is essential for the 

subsequent face recognition process. The entire face detection process, from resizing the input 

image to computing the facial descriptors, ensures high accuracy and robustness in detecting 

and recognizing faces under various conditions. 

 



44 

 

 

Figure 29: Example of visual representation of 128-dimensional descriptors computed for faces 

 

3.3.6 Face Recognition Algorithm 

 
Face recognition using dlib's CNN architecture involves a series of steps, starting with the 

utilization of a pre-trained CNN model provided by the dlib library. This CNN model is 

specifically designed for face detection and recognition tasks, renowned for its accuracy and 

robustness. In the context of face recognition, the primary objective is to leverage the learned 

features of this model to create meaningful embeddings for individual faces. 

 

 

Figure 30: Simple architecture of CNN 

 

The first step entails acquiring a pre-trained CNN model, mmod_human_face_detector.dat, 

typically available through the dlib library. This model is pre-trained on extensive face datasets, 

enabling it to capture high-level features from various facial characteristics. Once the CNN 

model is obtained, the face dataset undergoes meticulous pre-processing. This involves resizing 

each face image and ensuring the dataset is prepared for detection and recognition tasks. The 

subsequent phase involves feature extraction, where the pre-trained CNN model is employed 
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to extract relevant features from the face images. The top layers of the CNN model usually 

consist of fully connected layers that are used for classification purposes. 

 

An embedding layer is introduced to the CNN model to further refine the feature extraction 

process. This additional layer aids in reducing the dimensionality of the extracted features and 

fosters the creation of a meaningful representation of faces within a feature space. Afterward, 

the training phase follows during which the CNN model is trained on the prepared face dataset. 

A crucial aspect of this training is the selection of an appropriate loss function, with the triplet 

loss being a common choice for face recognition tasks. The triplet loss enforces that the 

distance between embeddings of faces belonging to the same person (positive pair) is 

minimized while the distance between embeddings of faces from different individuals 

(negative pairs) is maximized. 

 

ResNet (Residual Network) is a type of deep neural network that addresses the problem of 

vanishing gradients in deep networks by introducing residual connections. These connections 

allow the model to learn residual functions regarding the input layer, enabling the training of 

very deep networks. ResNet architectures consist of multiple residual blocks, each containing 

convolutional layers, batch normalization, and ReLU activations. The key innovation is the 

shortcut connection that bypasses one or more layers, adding the input directly to the output of 

the stacked layers. This design helps in maintaining gradient flow, thus enabling the 

construction of extremely deep networks without performance degradation. 

 

 

Figure 31: Visualization of ResNets 
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The dlib face recognition model, dlib_face_recognition_resnet_model_v1, uses a variant of the 

ResNet architecture to compute 128-dimensional descriptors for faces. These descriptors are 

compact feature representations that capture the unique characteristics of each face, making 

them suitable for recognition tasks. 

 

 

Figure 32: Example of 128 embeddings value for an image 

 

Fine-tuning can optionally be performed on the model to adapt it to the specific characteristics 

of the target faces in the dataset. This fine-tuning process refines the model’s parameters to 

enhance its performance on the given face recognition task. After that, a new face image is 

passed through the trained CNN-based model during face recognition inference to obtain its 

embedding in the learned feature space. The following step involves comparing the embedding 

of the input face with the embeddings of known faces in the dataset. Lastly, a threshold is set 

for similarity scores to make a final determination of whether the input face matches any known 

face in the dataset. If the similarity score surpasses the established threshold, the input face is 

recognized as belonging to a known individual. 

 

 

 

 

 

 

 

 

 

 



47 

 

3.3.7 Data Interfacing 
 

Integrating data between the processing unit and the mobile device in the context of face 

recognition involves the mobile device's camera serving as the input mechanism, capturing 

facial images for subsequent processing on a laptop. The image captured by the smartphone is 

sent to the laptop, where it triggers the backend program to initiate the facial recognition 

process. The laptop, running a local server created using the Flask framework, handles the 

image processing tasks using Python and OpenCV libraries. This process includes detecting 

faces, extracting features, and recognizing individuals using pre-trained models from the dlib 

library. Once the image processing is completed, the recognition results are logged and saved. 

 

A local area network (LAN) uses Wi-Fi technology to enable seamless wireless communication 

between the mobile device and the laptop. This setup allows both the smartphone and laptop 

to connect to the same Wi-Fi network, facilitating the transfer of data between them. The local 

server hosted on the laptop manages HTTP requests and routes the necessary data to and from 

the mobile device. This ensures that the facial recognition results can be effectively processed 

and stored on the laptop, enhancing the accuracy and efficiency of the system. 

 

In summary, the system employs a smartphone for capturing images and a laptop for processing 

them, with a Flask server facilitating the communication between the devices over a Wi-Fi 

network. This configuration ensures efficient and accurate face recognition, with results that 

can be easily accessed and managed on the laptop. 
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4- Implementation and Testing 

 
4.1 UML Diagram 

 

 
 

Figure 33: UML Diagram 

 

The figure above shows the UML diagram of this project. The laptop serves as the processing 

unit of this system and is used for the implementation of image processing algorithms, acting 

as the interface between mobile devices and data storage. The mobile device's camera captures 

photos of individuals' faces and transmits them to the laptop through a local area network 

(LAN). Before capturing an image, the setup is adjusted to ensure optimal lighting and 

positioning for better recognition results. 

 

The mobile device captures images and sends them to the Flask server over the LAN for further 

processing. This transmission is facilitated by a web interface that connects the mobile device 

to the Flask server. The Flask server receives the images and manages the uploaded images. 

The uploaded images are temporarily stored on the Flask server before being sent to the laptop 

for detailed analysis. 

 

Upon receiving the processed images from the Flask server, the laptop runs specialized 

algorithms to detect faces within the images. This involves using pre-trained models to identify 

and locate faces accurately. The detected faces are then recognized by matching them with 

known faces stored in the database, a process that includes extracting features from the detected 

faces and comparing them against the database entries. The recognition results, including 

identified faces and their corresponding data, are logged and stored in the database for future 

reference, ensuring that attendance and identification records are maintained accurately. 

 

In summary, the laptop serves as the central processing unit, implementing the image 

processing algorithms and acting as the interface between the mobile device and data storage. 
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The mobile device captures photos of faces and transmits them to the laptop through the Flask 

server using a LAN. The Flask server receives and processes the images, which are then 

analyzed on the laptop to detect and recognize faces. The results are logged in a database for 

future reference, providing a comprehensive understanding of the system's workflow as 

depicted in the UML diagram. 

 

4.2 Flowchart 

 

Figure 34: Flowchart of the overall system 
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The figure above illustrates the main function of the face recognition system. The workflow 

begins with the initialization of the system, preparing it to capture and process images. The 

first step involves the mobile device capturing an image of the students who are present. This 

image serves as the raw input for the system. Once captured, the image is uploaded to the Flask 

server, facilitating further processing on a more powerful machine (the laptop). 

Upon receiving the image, the Flask server stores it in the image storage directory, ensuring its 

availability for subsequent operations. The stored image is then loaded into the server’s 

memory for processing. In the pre-processing stage, the image undergoes several 

transformations: it is resized to a standard dimension for the face detection process. 

Before starting face detection, the system prompts the user to enter additional information such 

as the course code, subject name, instructor name, and any remarks. This information is crucial 

for associating the recognized faces with the relevant metadata. 

Next, the pre-processed image is passed through the feature extraction process using dlib. This 

involves identifying facial landmarks and computing face descriptors, which are unique 

representations of each face. The system detects faces within the image, identifying their 

locations using OpenCV and dlib. The face recognition engine then attempts to recognize the 

detected faces by comparing the extracted descriptors against a database of known faces, 

utilizing models like CNN and ResNet for matching. 

At the decision point, the system checks if the detected face matches any face in the database. 

If a match is found, the face descriptors of the recognized faces are stored in the database, and 

the recognition results, including names and IDs, are logged. If no match is found, the faces 

are verified as unknown and it will not proceed to the storing process. Finally, the facial 

recognition module updates the new attendance data, showing which students have been 

recognized and logged into the file directory. The process completes with all recognized faces 

logged and the user interface updated, enhancing the accuracy and efficiency of attendance 

tracking in educational settings. 
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4.3 Hardware Implementation 

 
In the implementation of this project, a Redmi Note 9 Pro serves as the primary device for 

capturing images of students upon their entry into the classroom. The smartphone operates on 

the Android 10 platform with MIUI 12, featuring a robust processing capability with its 

2.32GHz octa-core configuration. The device boasts substantial storage capacity, offering 

128GB of internal storage complemented by 6GB of RAM, providing ample space for efficient 

image storage and processing. Notably, the Redmi Note 9 Pro is equipped with an advanced 

camera system, featuring a 64 MP wide lens, an 8 MP ultrawide lens, a 5 MP macro lens, and 

a 2 MP depth sensor. This camera setup ensures high-quality image capture, enabling precise 

facial recognition. [30] 

 

On the processing end, an Asus TUF F15 2022 model takes charge of executing the facial 

recognition program. Powered by the 12th Gen Intel® Core™ i5-12500H Processor clocked at 

2.5 GHz, this laptop exhibits formidable computational capabilities. With a total of 12 cores, 

comprising 4 powerful P-cores and 8 efficient E-cores, the processor ensures swift and efficient 

handling of the facial recognition algorithms. The system is further enhanced by 8GB DDR4-

3200 SO-DIMM memory, supporting dual-channel memory for optimal multitasking 

performance. Storage needs are met by a 512GB PCIe® 3.0 NVMe™ M.2 SSD, offering high-

speed data access for seamless program execution. 

 

Noteworthy is the inclusion of the NVIDIA® GeForce RTX™ 3050 Laptop GPU in the Asus 

TUF F15, operating at 1790MHz* with a 95W power profile (including a 50MHz OC and 15W 

Dynamic Boost). This dedicated GPU, with its 4GB GDDR6 memory, significantly contributes 

to the efficiency of the facial recognition program, ensuring accelerated image processing and 

accurate identification. The combination of a powerful smartphone and a high-performance 

laptop underscores the project's commitment to leveraging cutting-edge technology for 

effective and reliable facial recognition in the classroom environment.[31] 

 

 

 

 
 

 

 

                     Figure 35: Redmi Note 9 Pro                                      Figure 36: ASUS TUF Gaming F15 2022 
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4.4 Software Implementation 

 

 

Figure 37: Python logo 

 

Python, a high-level programming language, served as the foundation for developing the face 

recognition system. Leveraging its high-level characteristics, Python provides a user-friendly 

environment with enhanced code readability and less stringent code formatting compared to 

languages like C or C++. This quality contributes to reduced costs associated with program 

maintenance. Furthermore, Python's extensive standard library facilitates code modularity and 

reusability, fostering versatility in applications, including interfaces for operating systems and 

machine learning within the realm of face recognition. 

 

 

Figure 38: OpenCV logo 

 

OpenCV, aptly named for "Open Source Computer Vision," stands as a versatile open-source 

library extensively utilized in the realm of face recognition, visual image processing, and 

machine learning systems. This library boasts compatibility with four programming languages, 

namely C++, Python, Java, and MATLAB, across various platforms. Equipped with over 2500 

optimized algorithms, OpenCV plays a pivotal role in enabling advanced face recognition 
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algorithms. The implementation of image processing techniques, readily available in OpenCV, 

encompasses a spectrum of functionalities, including gray scaling, thresholding, and image 

feature extraction, crucial for tasks such as contour determination for precise face localization. 

An exhaustive online documentation resource provides comprehensive insights into the syntax 

and functions of these face recognition algorithms, serving as a valuable reference and guide 

for developers and researchers alike. 

 

 

Figure 39: Flask logo 

 

Flask is a lightweight web framework for Python, designed to simplify the development of web 

applications. It provides developers with the tools to create robust and scalable web 

applications quickly and efficiently. Flask follows a minimalistic approach, allowing 

developers to use only the components they need while maintaining the flexibility to extend 

and customize the application as required. In the context of the face recognition system, Flask 

serves as the backbone for managing image uploads, processing images, and providing a user-

friendly interface. It acts as the intermediary between the client devices (such as mobile 

devices) and the processing unit (laptop), facilitating seamless communication and data 

transfer. 
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Figure 40: Dlib logo 

 

Dlib is a toolkit containing machine learning algorithms and tools for creating complex 

software, and it is particularly well-suited for tasks related to face detection and face 

recognition. The library includes several pre-trained models that are specifically designed to 

enhance accuracy and robustness in these applications. One such model is the 

cnn_face_detection_model_v1, a pre-trained CNN model that enables the system to efficiently 

identify faces in images. Another essential model provided by dlib is the 

shape_predictor_68_face_landmarks, which predicts 68 facial landmarks, crucial for precise 

face localization and alignment. Additionally, the face_recognition_model_v1 computes face 

descriptors, which are essential for recognizing and distinguishing between different faces. The 

functionality offered by dlib, combined with its ease of integration into Python applications, 

makes it an invaluable tool for implementing advanced face recognition systems. 

 

 

Figure 41: Numpy logo 

 

NumPy is a fundamental package for scientific computing with Python, widely used for array 

and matrix operations essential in image processing and machine learning tasks. In the face 

recognition system, NumPy is utilized to handle and manipulate large datasets of image data 

and facial descriptors efficiently. It provides support for multi-dimensional arrays and matrices, 

along with a collection of mathematical functions to operate on these arrays, making it a 

cornerstone library for numerical computations in Python. 
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Figure 42: Pandas logo 

 

Pandas is a data manipulation and analysis library used to handle and process data in CSV files. 

In the context of the face recognition system, Pandas is employed to load and manage known 

face descriptors and associated metadata, such as names and IDs. This library simplifies the 

process of reading, writing, and manipulating structured data, enabling efficient data handling 

and preprocessing tasks required for accurate face recognition. 

 

 

Figure 43: Scipy logo 

 

scipy is a library used for scientific and technical computing. In this script, it is used specifically 

for computing the cosine distance between face descriptors, a crucial step in the face 

recognition process. The library offers a range of functions for mathematical algorithms and 

statistical operations, making it a vital tool for implementing advanced scientific computations 

in Python. 
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Figure 44: Tkinter logo 

 

Tkinter is a standard GUI (Graphical User Interface) toolkit in Python. It is used here to create 

a simple file dialog for selecting image files. Tkinter provides a fast and easy way to create 

GUI applications, allowing users to interact with the face recognition system through a 

graphical interface. This integration enhances the usability of the system by providing a user-

friendly method for selecting and processing images. 

 

 

Figure 45: Python Time module 

 

The time module provides various time-related functions, used in this script to measure the 

processing time of the operations. By recording the start and end times of the face recognition 

process, it allows for the calculation of the total time taken to complete the task, which is useful 

for performance evaluation and optimization. 
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Figure 46: Python OS module 

 

The os module provides a way of using operating system-dependent functionality, such as 

handling file paths and saving uploaded images. In the face recognition system, the os module 

is used to manage file operations, ensuring that images are correctly saved and accessed during 

the processing workflow. This module’s functionality is crucial for maintaining an organized 

file structure and handling file-related tasks efficiently. 

 

 

 

Figure 47: JetBrains Pycharm logo 

 

PyCharm plays a pivotal role in the development of face recognition systems by providing a 

robust and versatile integrated development environment (IDE). As a feature-rich code editor, 

PyCharm streamlines the writing and editing of code for face recognition algorithms, offering 

functionalities such as syntax highlighting, auto-completion, and linting to enhance code 

correctness and efficiency. Its integrated version control, particularly through Git support, 

facilitates collaborative development in large-scale face recognition projects. With a vast array 

of extensions, developers can augment the IDE's functionality to include features related to 

Python development, machine learning frameworks, and Git integration, aligning the 

environment with the specific needs of face recognition projects. The IDE's powerful 

debugging tools, task automation capabilities, and an integrated terminal contribute to efficient 

troubleshooting and automation of repetitive tasks, critical for ensuring the accuracy and 
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reliability of face recognition algorithms. Additionally, PyCharm provides a seamless 

interactive development environment for Python, making it well-suited for face recognition 

systems implemented in this language. Its cross-platform compatibility ensures that developers 

can work seamlessly across different operating systems, fostering flexibility in the 

development process. In summary, PyCharm serves as a comprehensive and adaptable tool that 

significantly contributes to the development, testing, and maintenance of the software aspects 

of face recognition applications. 

 

4.5 Testing 

In this section, we examine the performance of the Convolutional Neural Network (CNN) 

model for face detection and recognition across various distances between the camera and the 

subject. Evaluating the model's effectiveness at different distances is crucial for applications 

that involve varying proximity. By testing the model under these conditions, we aim to 

understand its robustness and reliability in real-world scenarios. 

 

Additionally, we assess the model's accuracy and processing time duration when detecting and 

recognizing faces with different numbers of people. This evaluation helps determine the 

scalability of the model and its efficiency in handling images with varying complexity and 

crowd density. To ensure consistency and control over the testing variables, all tests are 

conducted under the same conditions except for 2-meter tests. The images are captured at the 

same height, from the same angle, in the same room, and using the same group of students as 

subjects for 3-meter tests to 5-meter tests. This controlled setup helps to isolate the impact of 

distance and the number of people on the model's performance, providing more accurate and 

reliable results. The parameters set to test the accuracy and processing time duration of the face 

recognition system are the different distances from the camera and the different numbers of 

students in the images.  
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Figure 48: Classroom used for testing 

 

4.5.1 Face Detection and Recognition with Different Distances 
 

Each face detection and recognition effectiveness are dependent on the distance from which 

the image was taken. To test the effective distance for face detection and recognition, images 

of faces are taken starting from 2 meters up to 5 meters. Four samples are taken at each distance 

to ensure the accuracy and reliability of the data, with each row in the setup representing a 1-

meter increment. The tests are conducted under controlled conditions, maintaining the same 

height, same angle, same room, and the same group of students for each distance. It is worth 

noting that the performance at 2 meters is particularly good, which suggests that slight 

variations at this distance do not significantly affect the overall results. Sample images taken 

at distances of 2 meters to 5 meters are shown in the table below: 
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Distance (m) Sample image 

2 

 

 

3 
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4 

 

 

5 

 

 
Table 7: Sample images for distance test 

 

Next, the figure below demonstrates the classroom setup for testing face detection and 

recognition at various distances. Each row represents a distance from the camera, starting from 

1 meter to 5 meters. The labels indicate the distance from the camera to the row where the 

subjects will be seated while the other figure shows the measurement of the distance to the fifth 

row, which is considered as 5 meters, confirming it is approximately 4.90 meters. This ensures 

accurate distance labeling for the testing setup. 
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Figure 49: Classroom distance setup 

 

 
Figure 50: Example of distance measurement 
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4.5.2 Face Detection and Recognition with Different Numbers of Students 

 

The accuracy and processing time of the face detection and recognition system depend on the 

number of people present in the image. To investigate this, images containing different 

numbers of students, ranging from 4 to 10 individuals, were captured. Four images were taken 

for each group size to ensure data accuracy and reliability. All tests were performed under 

controlled conditions, maintaining consistent height, angle, room, and using the same group of 

students. Below are examples of images with varying numbers of students: 

 

Number of students 

captured 

Sample image 

4 

 
 

6 
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8 

 

 

10 

 

 
Table 8: Sample images for number of students test 
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4.5.3 Face Detection and Recognition Results  

 
The following images show the results of face detection and recognition at different distances: 

 

 

Figure 51: Sample output image for 2m                                       

 

Figure 52: Sample output image for 3m 
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Figure 53: Sample output image for 4m 

 

 

Figure 54: Sample output image for 5m 
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Next, the following images show the results of face detection and recognition with different 

numbers of students: 

 

 

Figure 55: Sample output image for 4 students 

 

Figure 56: Sample output image for 6 students 
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Figure 57: Sample output image for 8 students 

 

Figure 58: Sample output image for 10 students 
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Before the face detection and recognition process, the system prompts the user to enter 

additional information such as the subject name, instructor name, course code, and any 

remarks. This information is then associated with the recognized faces and saved in the output 

files.  

 

 

Figure 59: Sample user prompt output image for 10 students 

 

Apart from that, the figure above shows the console output where the user is prompted to enter 

the subject name, instructor name, course code, and remarks. After processing, the system 

saves the output image and an Excel file containing the recognition results and additional 

details. The processed image with recognized faces is saved to a specified directory while ten 

recognized names, IDs, and additional information are saved to an Excel file for record-

keeping.  

 

 

Figure 60: Output image and generated Excel file from the sample of 10 students 
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4.6 User Interface 

4.6.1 Mobile Device Interface 

 

    

Figure 61: Wi-Fi connection in laptop and mobile device 

 

Before connecting the mobile device with the laptop, both devices must connect to the same 

Wi-Fi as shown in the figure above. The Flask server needs to be running to handle incoming 

requests from the mobile device. 

 

 

Figure 62: Starting the Flask server 
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The Flask server can be started from the “Flask.py” script and it will show output as shown in 

the figure above. Ensure that the server is running and listening for requests. 

 

 

Figure 63: QR code for IP address 

 

The IP address of the laptop is generated in a QR code format. The mobile device can scan the 

QR code to access the webpage directly, as shown in the figure above. 

 

 

Figure 64: Homepage design (mobile view) 
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Figure 65: Application page with single or multiple selection (mobile view) 

 

After entering the webpage, the layout is shown in the figure above. The user is required to 

select the “choose file” button to choose the image(s) they want to process and press the 

“upload” button to send the image(s) to the laptop. The user can upload both single and multiple 

files for processing. After receiving the image(s) from the mobile device, the laptop will 

execute the face recognition program and save the output recognition result to a specified 

directory. 

 



73 

 

 

Figure 66: Output displayed on webpage (mobile view) 

 

Once the upload is complete, the webpage will display a message saying "Thank you for your 

submission" as shown in the figure above. 
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4.6.2 Laptop Interface 

 

Figure 67: Output of Flask server 

 

The figure above shows the output of the Flask server running on the laptop. The IP address 

displayed (circled up in yellow) can be clicked or entered in the web browser on the laptop to 

access the same webpage hosted by the Flask server which is shown below. This allows both 

the laptop and mobile device to access the web application for face detection and recognition, 

ensuring seamless interaction and processing. 

 

 

Figure 68: Homepage design (laptop view) 
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Figure 69: Application page with single or multiple selection (laptop view) 

 

The webpage and function of the webpage are the same as the mobile view which is shown in 

the figure above. 
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Figure 70: Proof that all images selected have been saved in the folder of laptop 

 

All the images sent to the laptop have been saved in a folder so that they can be accessed on 

the laptop anytime which is proved by the figure above. 
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5- Results and Discussion 
 

5.1 Results and Analysis 

 

5.1.1 Distance Test 

 
The summary of the system performance at a distance range of 2m to 5m is shown in the table 

below: 

Distance (m) Accuracy (%) 

2 100.00 

3 94.64 

4 90.48 

5 88.65 

Average accuracy = 93.44% 

Table 9: Accuracy table with sample test images according to distances 

 

The accuracy according to distance and the average accuracy are calculated as follows: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
 

 

𝑤ℎ𝑒𝑟𝑒  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 = 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝑓𝑎𝑐𝑒𝑠 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑟𝑒𝑐𝑜𝑔𝑛𝑖𝑧𝑒), 
𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 
= 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 (𝑡𝑜𝑡𝑎𝑙 𝑓𝑎𝑐𝑒𝑠 𝑟𝑒𝑐𝑜𝑔𝑛𝑖𝑧𝑒𝑑) 

                 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑜𝑡𝑎𝑙 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠 𝑇𝑒𝑠𝑡𝑒𝑑
 

 

The system demonstrates effective face recognition capabilities within a range of 2 to 4 meters, 

achieving a success rate of at least 90%. This observation highlights a decline in accuracy as 

the distance increases, as illustrated in the table for objective 1, which presents the relationship 

between distances and accuracy. Several technical factors contribute to this decline. 

 

 As the distance between the camera and the faces increases, the number of pixels representing 

each face decreases. This reduction in pixel density leads to a significant loss of detail, making 

it more challenging for face recognition algorithms to accurately identify distinguishing 

features such as the contours of facial landmarks, skin texture, and subtle expressions. 

Additionally, the decline in resolution at greater distances affects the clarity of captured images. 

Lower resolution means that the finer details are not as discernible, which can reduce the 
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effectiveness of the facial feature extraction process. As a result, the computed descriptors used 

for recognition are less precise, increasing the likelihood of errors.  

 

5.1.2 Number of Students Test 
 

The following table summarizes the detection and recognition capabilities under different 

groups of students that are captured in a single frame for objective 2. The number of students 

is grouped by 4 settings starting from 4 students, 6 students, 8 students, and 10 students. 

 

Number of students Processing time(s) Accuracy (%) 

4 101.93 97.92 

6 104.65 95.74 

8 105.37 93.18 

10 106.94 90.33 

Table 10: Performance metrics of facial recognition system by number of students 

 

The processing time and accuracy according to number of students are calculated as follows: 

𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 =
𝑇𝑜𝑡𝑎𝑙 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑇𝑖𝑚𝑒 𝑝𝑒𝑟 𝐼𝑚𝑎𝑔𝑒 𝑜𝑓 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠

𝑇𝑜𝑡𝑎𝑙 𝐼𝑚𝑎𝑔𝑒 𝑜𝑓 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠
 

                 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑜𝑡𝑎𝑙 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝑝𝑒𝑟 𝐼𝑚𝑎𝑔𝑒 𝑜𝑓 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠

𝑇𝑜𝑡𝑎𝑙 𝐼𝑚𝑎𝑔𝑒 𝑜𝑓 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠
 

 

From the table, it is observed that as the number of individuals in the frame increases from 4 

to 10, the processing time increases from 101.93 seconds to 106.94 seconds, and the accuracy 

decreases from 97.92% to 90.33%. This decline in accuracy can be attributed to resolution 

decline, where more faces in the frame mean each face occupies fewer pixels, leading to a loss 

of detail and making it harder for the algorithm to accurately identify distinguishing features. 

Additionally, the complexity of accurately matching each face to the correct identity in the 

database increases, leading to a higher chance of errors. More individuals in the frame can also 

introduce variability and background noise, complicating the recognition process. 

 

These performance metrics indicate that while the system performs well with a smaller number 

of individuals, its efficiency and accuracy decrease as the number of individuals increases. This 

highlights the need for continued refinement in feature extraction and algorithm tuning to 
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improve scalability and robustness. Optimizing hardware resources and enhancing algorithm 

efficiency can help achieve consistent accuracies closer to the ideal target of 100%. 

 

5.1.3 Processing Time Test 
 

The summary of the relationship between distance and processing time required for facial 

recognition is shown in the table below: 

 

Distance (m) Processing time (s) 

2 104.94 

3 106.74 

4 107.00 

5 109.74 

Average processing time = 107.11s 

Table 11: Relationship between distance and processing time 

 

The processing time and average processing time according to distances are calculated as 

follows: 

𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 =
𝑇𝑜𝑡𝑎𝑙 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑇𝑖𝑚𝑒 𝑝𝑒𝑟 𝐼𝑚𝑎𝑔𝑒 𝑜𝑓 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝑇𝑜𝑡𝑎𝑙 𝐼𝑚𝑎𝑔𝑒 𝑜𝑓 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒
 

                 

 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑇𝑖𝑚𝑒 =
𝑇𝑜𝑡𝑎𝑙 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑇𝑖𝑚𝑒

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠 𝑇𝑒𝑠𝑡𝑒𝑑
 

 

 

The table illustrates the relationship between distance and processing time required for facial 

recognition. As the distance from the camera increases from 2 meters to 5 meters, there is a 

noticeable increase in processing time. At a distance of 2 meters, the processing time is 104.94 

seconds. This time increases progressively with distance, reaching 106.74 seconds at 3 meters, 

107.00 seconds at 4 meters, and 109.74 seconds at 5 meters. The average processing time across 

these distances is calculated to be 107.11 seconds. 

 

This trend suggests that as the distance between the camera and the subjects increases, the 

system requires more time to process and recognize faces. This increase in processing time can 

be attributed to several factors, including the decrease in resolution and detail of the faces 

captured at greater distances, which necessitates more computational effort to accurately 

identify distinguishing features. Additionally, the increased complexity of matching faces 

against the database and potential variability in background noise at longer distances also 

contribute to the longer processing times. Overall, these results highlight the need for 
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optimizing the system's performance to maintain efficiency and accuracy across varying 

distances. 

 

5.2 Discussion 
 

 

Figure 71: Graph of distance vs accuracy 

 

The graph illustrates the relationship between distance and accuracy in the facial recognition 

system. As the distance from the camera increases, there is a clear and steady decline in 

accuracy. At a distance of 2 meters, the system achieves nearly perfect accuracy at 

approximately 100%. This high accuracy indicates that the system performs exceptionally well 

when faces are captured within close proximity, where the resolution and detail of the facial 

features are highest. As the distance increases to 3 meters, the accuracy drops to around 95%. 

This decline, although slight, marks the beginning of the system's decreased effectiveness due 

to the increased distance. The resolution begins to decrease, resulting in less detailed facial 

features for the recognition algorithm to process accurately. Further increasing the distance to 

4 meters results in a more pronounced drop in accuracy to approximately 91%. At this distance, 

the resolution and detail of the faces are significantly lower, leading to a more challenging 

recognition process. The system struggles more to extract and match facial features accurately, 

which is reflected in the reduced accuracy. At 5 meters, the accuracy declines to around 89%. 

This continued decline underscores the impact of increased distance on the system's 

performance. At greater distances, not only is the resolution lower, but other factors such as 

87

89

91

93

95

97

99

101

2 2.5 3 3.5 4 4.5 5

A
cc

u
ra

cy
 (

%
)

Distance (m)

Distance (m) vs Accuracy (%)



81 

 

increased background noise and variability in lighting conditions also come into play, further 

complicating the recognition task. 

 

The overall trend depicted in the graph highlights a critical challenge in facial recognition 

systems: maintaining high accuracy at greater distances. The decrease in accuracy with 

increasing distance can be attributed to the reduction in the number of pixels representing each 

face, leading to a loss of detail. Additionally, the increased complexity of distinguishing 

between faces and matching them accurately in the database adds to the decline in performance. 

 

 

Figure 72: Graph of the number of students captured vs processing time 

 

The graph illustrates the relationship between the number of students in the frame and the 

processing time required by the facial recognition system. As the number of students increases, 

there is a noticeable increase in processing time. When there are 4 students in the frame, the 

processing time is approximately 101.93 seconds. This serves as the baseline, reflecting the 

system's performance with a relatively small number of faces to process. As the number of 

students increases to 6, the processing time rises to about 104.65 seconds. This increase can be 

attributed to the additional computational load required to process and distinguish between 

more faces. The system must analyze more data, which naturally extends the processing time. 

With 8 students, the processing time further increases to approximately 105.37 seconds. The 

trend indicates that the system continues to require more time as the number of faces increases. 

This is due to the complexity involved in accurately identifying and matching each face against 

the database. When the number of students reaches 10, the processing time peaks at around 
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106.94 seconds. At this point, the system is handling a significantly larger volume of data, 

resulting in the longest processing time recorded. The increased number of faces in the frame 

requires more intensive computation to maintain accuracy in facial recognition. 

 

The overall trend depicted in the graph demonstrates a clear correlation between the number of 

individuals and processing time. As more students are added to the frame, the processing time 

increases steadily. This is indicative of the system's computational limitations and the 

scalability challenges associated with processing multiple faces simultaneously. 

 

 

Figure 73: Graph of the number of students captured vs accuracy 

 

The graph illustrates the relationship between the number of students in the frame and the 

accuracy of the facial recognition system. As the number of students increases, there is a clear 

and steady decline in accuracy. When there are 4 students in the frame, the system achieves an 

accuracy of approximately 97.92%. This high accuracy reflects the system's effectiveness when 

dealing with a smaller number of faces, where it can dedicate more computational resources to 

accurately identifying each individual. As the number of students increases to 6, the accuracy 

drops to about 95.74%. This decline, although moderate, indicates that the system begins to 

face challenges in maintaining high accuracy as the number of faces increases. The additional 

faces introduce more complexity in distinguishing and matching each face correctly. With 8 

students in the frame, the accuracy further decreases to approximately 93.18%. At this point, 

the system has to manage even more faces, which reduces the available computational 

resources per face. This leads to a greater chance of recognition errors. When the number of 
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students reaches 10, the accuracy falls to around 90.33%. This significant drop highlights the 

system's difficulty in handling a large number of faces simultaneously. The increased volume 

of data and the complexity of accurately identifying each face resulted in a noticeable decline 

in performance. 

 

The overall trend depicted in the graph shows a clear inverse relationship between the number 

of individuals and the accuracy of the facial recognition system. As more students are added to 

the frame, the accuracy steadily decreases. This is indicative of the system's limitations in 

processing multiple faces with high precision. 

 

 
Figure 74: Graph of distance vs processing time 

 

The graph illustrates the relationship between the distance from the camera and the processing 

time required by the facial recognition system. As the distance increases, there is a noticeable 

increase in processing time, albeit with some variability. At a distance of 2 meters, the 

processing time is approximately 104.94 seconds. This serves as the baseline, reflecting the 

system's performance when faces are captured at proximity, where the resolution and detail of 

facial features are highest. As the distance increases to 3 meters, the processing time rises to 

about 106.74 seconds. This increase can be attributed to the additional computational effort 

required to process faces captured at a slightly lower resolution, where the system needs to 

work harder to maintain accuracy. With a further increase in distance to 4 meters, the 

processing time experiences a slight dip to approximately 107.00 seconds. The near-plateauing 

of processing time at this distance suggests that the system's performance might be stabilizing 

temporarily despite the increased distance. However, the overall trend indicates that processing 
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times continue to rise. When the distance reaches 5 meters, the processing time peaks at around 

109.74 seconds. This significant increase highlights the system's challenges in processing faces 

captured at greater distances. At this point, the system is dealing with lower-resolution images, 

which require more intensive computation to accurately extract and match facial features. 

 

The overall trend depicted in the graph shows that as the distance between the camera and the 

subjects increases, the processing time required by the facial recognition system also increases. 

This is indicative of the system's computational limitations and the additional effort needed to 

maintain accuracy at greater distances. 
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6- Project Management 

 
A Gantt chart is utilized to outline the project plan and oversee the project's progression by 

continuously monitoring its progress. The chart enumerates the planned activities and the 

estimated time required for each. The status of the tasks is indicated on the chart and updated 

every week. 

 

 
Figure 75: Gannt chart of the project preparation 

 

 

Figure 76: Gannt chart of the project realisation 
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During the first session, the focus was on planning and conducting research. Key activities 

included researching the project title, confirming the project and supervisor, writing and 

submitting brief and ethics forms, and conducting background research. The planned and actual 

progress were closely aligned, with minor deviations in some tasks. 

 

The second session primarily concentrated on building the model, writing the program, testing 

the system, analyzing data, and writing the thesis. Significant tasks included research on YOLO 

face detection and setup, which was completed on time, and the setup of hardware and software 

requirements, which experienced delays due to software changes affecting subsequent tasks. 

Modifications and customizations to the YOLO code were made to enhance performance, and 

sample images were collected and tested as planned. Dependency issues with YOLOv8 were 

resolved, allowing for continued modifications and training of the YOLO model. The 

development of the MTCNN algorithm was initially pursued but later revised to use CNN and 

dlib for improved accuracy. This change was implemented after accuracy tests showed better 

results with CNN and dlib. Throughout this session, continuous improvements were made to 

enhance recognition features and accuracy, culminating in final tests to ensure the system met 

project objectives. Preparations for the project presentation were completed on time, and the 

project was successfully demonstrated. The thesis writing was completed, and the final 

submission was made as scheduled. 

 

Throughout both sessions, documentation processes, including brief form preparation, logbook 

updates, data collection, and report and thesis writing, were consistently carried out. Despite 

some delays caused by the extended time required for software implementation due to a lack 

of image processing knowledge, most tasks were completed on time. Overall, the project was 

completed within the planned timeline. 
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7- Conclusion 

 
Throughout this project, both the face detection process and face recognition process have been 

accomplished using Python programming language and the dlib image processing library along 

with the OpenCV library as well. The results obtained from all experiments have been recorded 

and analyzed. 

  

In short, the aim of the project was achieved by completing the medium-range facial 

recognition system with an average accuracy of 93.77%. The effects of distance and the number 

of faces in the frame on the accuracy and processing time duration of the system have been 

explored. Overall, the system functions well most of the time, except under extreme conditions 

such as images captured in very low brightness and images with significant occlusions or 

motion blur. However, several future improvements can be made to enhance the design and 

performance of the facial recognition system.  

 

7.1 Achievements 
 

Technical Objective Status and Explanation 

To develop a facial recognition system that 

can identify multiple individuals 

simultaneously at 93% accuracy with 

greater distances than 3 meters. 

Achieved. The overall system accuracy 

achieved is 93.44%. 

To establish a facial recognition system that 

can verify 10 individuals in one frame. 

Achieved. The system successfully verifies 

10 individuals in a single frame. 

To implement a real-time facial recognition 

system that has a processing time of 3 to 6 

seconds for multi-face detection and 

recognition. 

Not achieved. The system currently exceeds 

the target processing time, taking 107.11s for 

multi-face detection and recognition. 

Table 12: Achievements of objectives 

 

In this project, significant progress was made towards developing an effective medium-range 

facial recognition system. Two out of the three technical objectives were successfully achieved. 

The system can identify multiple individuals simultaneously at a high accuracy rate of 93.44% 

even at distances greater than 3 meters, and it can verify 10 individuals in one frame. 
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However, the third objective, which aimed to implement a real-time facial recognition system 

with a processing time of 3 to 6 seconds, was not met. The system currently takes longer than 

the target time for multi-face detection and recognition. This shortfall can be attributed to 

several factors, including the high computational complexity of the algorithms used, especially 

Convolutional Neural Networks (CNN) used in this project, which are known for their high 

accuracy but also require long processing times. Additionally, the limitations of the current 

hardware setup are not powerful enough to handle the intensive computational load within the 

desired time frame. Further optimization of the algorithm is required to reduce processing time 

without compromising accuracy. 

 

Future work should focus on addressing these issues to achieve the desired real-time 

performance. This could involve optimizing the algorithms for faster execution, upgrading 

hardware components, and exploring more efficient face detection and recognition techniques. 

By tackling these challenges, the system's performance can be improved to meet the real-time 

processing objectives. 

 

7.2 Recommendations for Future Work 

 
The medium-range facial recognition system has been developed with the specifications stated 

in the objective. Despite the successful completion of this project, there are several 

recommendations are suggested below to further enhance the performance and capabilities of 

the medium-range facial recognition system: 

 

• Reduce computational overhead by streamlining and simplifying the existing CNN-

based algorithms 

• Utilize multi-core processors or GPUs more effectively through parallel processing 

techniques 

• Reduce the model size and complexity using pruning and quantization techniques 

without significantly compromising accuracy 

• Improve input image quality by implementing noise reduction, contrast adjustment, and 

normalization 

• Enhance interoperability with various software platforms and devices by developing 

API endpoints and ensuring compatibility with standard data formats 

 



89 

 

8- List of references 

 
[1] AGN Business Internet BV, “5 common biometric techniques compared,” Recogtech.com, 

2020. https://www.recogtech.com/en/knowledge-base/5-common-biometric-techniques-

compared 

 

[2] B. Vidyapeeth, “A Comparative Study of Biometric Technologies with Reference to 

Human Interface K P Tripathi Lecturer (MCA Programme),” International Journal of 

Computer Applications, vol. 14, no. 5, pp. 975–8887, 2011, Accessed: Oct. 16, 2022. 

[Online]. Available: https://www.ijcaonline.org/volume14/number5/pxc3872493.pdf 

 

[3] Kavita Manral, “RFID: What are its Advantages and Disadvantages?,” Schneider Electric 

Blog, Jun. 20, 2021. https://blog.se.com/industry/machine-and-process-

management/2021/06/20/rifd-what-are-its-advantages-and-disadvantages/ 

 

[4] https://www.facebook.com/jason.brownlee.39, “How to Perform Face Detection with Deep 

Learning,” Machine Learning Mastery, Jun. 02, 2019. 

https://machinelearningmastery.com/how-to-perform-face-detection-with-classical-and-deep-

learning-methods-in-python-with-keras/ 

 

[5] S. Kostadinov, “What Is Deep Transfer Learning and Why Is It Becoming So Popular?,” 

Medium, Nov. 16, 2019. https://towardsdatascience.com/what-is-deep-transfer-learning-and-

why-is-it-becoming-so-popular-91acdcc2717a 

 

[6] E. Burns, “What is deep learning and how does it work?,” SearchEnterpriseAI, Mar. 2021. 

https://www.techtarget.com/searchenterpriseai/definition/deep-learning-deep-neural-network 

 

[7] N. Donges, “What is transfer learning? Exploring the popular deep learning approach,” 

Built In, Aug. 25, 2022. https://builtin.com/data-science/transfer-learning 

 

[8] “What is Face Detection and How Does It Work?,” SearchEnterpriseAI. 

https://www.techtarget.com/searchenterpriseai/definition/face-detection 

 

[9] “What is the Viola-Jones algorithm?,” Educative: Interactive Courses for Software 

Developers. https://www.educative.io/answers/what-is-the-viola-jones-algorithm 

 

https://www.recogtech.com/en/knowledge-base/5-common-biometric-techniques-compared
https://www.recogtech.com/en/knowledge-base/5-common-biometric-techniques-compared
https://www.ijcaonline.org/volume14/number5/pxc3872493.pdf
https://blog.se.com/industry/machine-and-process-management/2021/06/20/rifd-what-are-its-advantages-and-disadvantages/
https://blog.se.com/industry/machine-and-process-management/2021/06/20/rifd-what-are-its-advantages-and-disadvantages/
https://machinelearningmastery.com/how-to-perform-face-detection-with-classical-and-deep-learning-methods-in-python-with-keras/
https://machinelearningmastery.com/how-to-perform-face-detection-with-classical-and-deep-learning-methods-in-python-with-keras/
https://towardsdatascience.com/what-is-deep-transfer-learning-and-why-is-it-becoming-so-popular-91acdcc2717a
https://towardsdatascience.com/what-is-deep-transfer-learning-and-why-is-it-becoming-so-popular-91acdcc2717a
https://www.techtarget.com/searchenterpriseai/definition/deep-learning-deep-neural-network
https://builtin.com/data-science/transfer-learning
https://www.techtarget.com/searchenterpriseai/definition/face-detection
https://www.educative.io/answers/what-is-the-viola-jones-algorithm


90 

 

[10] “Educative Answers - Trusted Answers to Developer Questions,” Educative. 

https://www.educative.io/answers/what-is-histogram-of-oriented-gradients-hog 

 

[11] A. Mittal, “Haar Cascades, Explained,” Medium, Dec. 21, 2020. 

https://medium.com/analytics-vidhya/haar-cascades-explained-38210e57970d 

 

[12] “What is SIFT?,” Educative: Interactive Courses for Software Developers. 

https://www.educative.io/answers/what-is-sift 

 

[13] “10 Best Face Recognition APIs,” www.banuba.com. 

https://www.banuba.com/blog/best-face-recognition-apis (accessed Nov. 17, 2023). 

 

[14] “Face Recognition and Face Detection using OpenCV - javatpoint,” www.javatpoint.com. 

https://www.javatpoint.com/face-recognition-and-face-detection-using-opencv 

 

[15] Tashmit, “Coding Ninjas Studio,” www.codingninjas.com.  

https://www.codingninjas.com/studio/library/local-binary-pattern-algorithm (accessed Nov. 

17, 2023). 

 

[16] Kaspersky, “What is Facial Recognition – Definition and Explanation,” Kaspersky, Jan. 

13, 2021. https://www.kaspersky.com/resource-center/definitions/what-is-facial-recognition 

 

[17] P. Antoniadis, “How Do Eigenfaces Work?” 

https://www.baeldung.com/cs/author/panagiotisantoniadis (accessed Jun. 17, 2023). 

 

[18] “Face Recognition using Fisherfaces,” OpenGenus IQ: Learn Computer Science, Oct. 

13, 2019. https://iq.opengenus.org/face-recognition-using-fisherfaces/ 

 

[19] “What is face recognition?,” PyImageSearch, May 01, 2021. 

https://pyimagesearch.com/2021/05/01/what-is-face-recognition/ 

 

[20] D. Tyagi, “Introduction to SURF (Speeded-Up Robust Features),” Medium, Apr. 07, 

2020. https://medium.com/@deepanshut041/introduction-to-surf-speeded-up-robust-

features-c7396d6e7c4e 

 

[21] R. Lini, “Facial Landmark Detection Algorithms,” CodeX, Sep. 27, 2021. 

https://medium.com/codex/facial-landmark-detection-algorithms-5b2d2a12adaf 

https://www.educative.io/answers/what-is-histogram-of-oriented-gradients-hog
https://medium.com/analytics-vidhya/haar-cascades-explained-38210e57970d
https://www.educative.io/answers/what-is-sift
https://www.javatpoint.com/face-recognition-and-face-detection-using-opencv
https://www.kaspersky.com/resource-center/definitions/what-is-facial-recognition
https://iq.opengenus.org/face-recognition-using-fisherfaces/
https://pyimagesearch.com/2021/05/01/what-is-face-recognition/
https://medium.com/@deepanshut041/introduction-to-surf-speeded-up-robust-features-c7396d6e7c4e
https://medium.com/@deepanshut041/introduction-to-surf-speeded-up-robust-features-c7396d6e7c4e


91 

 

[22] L. Oliver, “3D Face Recognition The Ultimate Guide For Greater Security,” Facia.ai, 

Sep. 08, 2023. https://facia.ai/blog/3d-face-recognition/ (accessed Nov. 17, 2023). 

 

[23] H. T, “DATA FUSION,” Haileleol Tibebu, Feb. 03, 2020. https://medium.com/haileleol-

tibebu/data-fusion-78e68e65b2d1 

 

[24] G. S. M. Diyasa, A. Fauzi, M. Idhom, and A. Setiawan, “Multi-face Recognition for the 

Detection of Prisoners in Jail using a Modified Cascade Classifier and CNN,” Journal of 

Physics: Conference Series, vol. 1844, no. 1, p. 012005, Mar. 2021, doi: 

https://doi.org/10.1088/1742-6596/1844/1/012005. 

 

[25] T. Mantoro, M. A. Ayu, and Suhendi, “Multi-Faces Recognition Process Using Haar 

Cascades and Eigenface Methods,” 2018 6th International Conference on Multimedia 

Computing and Systems (ICMCS), May 2018, doi: 

https://doi.org/10.1109/icmcs.2018.8525935. 

 

[26] “University Classroom Attendance System Using FaceNet and Support Vector Machine 

| IEEE Conference Publication | IEEE Xplore,” ieeexplore.ieee.org. 

https://ieeexplore.ieee.org/document/8921316 (accessed Nov. 17, 2023). 

 

[27] “YOLO Object Detection Explained: A Beginner’s Guide,” www.datacamp.com. 

https://www.datacamp.com/blog/yolo-object-detection-explained 

 

[28] R. Gradilla, “Multi-task Cascaded Convolutional Networks (MTCNN) for Face Detection 

and Facial Landmark Alignment,” Medium, Jul. 27, 2020. 

https://medium.com/@iselagradilla94/multi-task-cascaded-convolutional-networks-mtcnn-for-

face-detection-and-facial-landmark-alignment-7c21e8007923 

 

[29] G. Learning, “Everything you need to know about VGG16,” Medium, Sep. 23, 2021. 

https://medium.com/@mygreatlearning/everything-you-need-to-know-about-vgg16-

7315defb5918 

 

[30] “Xiaomi Redmi Note 9 Pro 5G - Full phone specifications,” www.gsmarena.com. 

https://www.gsmarena.com/xiaomi_redmi_note_9_pro_5g-10582.php (accessed Nov. 17, 

2023). 

https://medium.com/haileleol-tibebu/data-fusion-78e68e65b2d1
https://medium.com/haileleol-tibebu/data-fusion-78e68e65b2d1
https://doi.org/10.1088/1742-6596/1844/1/012005
https://doi.org/10.1109/icmcs.2018.8525935
https://www.datacamp.com/blog/yolo-object-detection-explained
https://medium.com/@iselagradilla94/multi-task-cascaded-convolutional-networks-mtcnn-for-face-detection-and-facial-landmark-alignment-7c21e8007923
https://medium.com/@iselagradilla94/multi-task-cascaded-convolutional-networks-mtcnn-for-face-detection-and-facial-landmark-alignment-7c21e8007923
https://medium.com/@mygreatlearning/everything-you-need-to-know-about-vgg16-7315defb5918
https://medium.com/@mygreatlearning/everything-you-need-to-know-about-vgg16-7315defb5918


92 

 

[31] “Buy ASUS TUF Gaming F15 (FX507Z-C4HN027W) | For-Gaming | Laptops,” eStore 

Malaysia. https://shop.asus.com/my/asus-tuf-gaming-f15-2022-fx507z-c4hn027w.html 

(accessed Nov. 17, 2023). 

 

[32] “Face detection with dlib (HOG and CNN),” PyImageSearch, Apr. 19, 2021. 

https://pyimagesearch.com/2021/04/19/face-detection-with-dlib-hog-and-cnn/ 

 

[33] T. Shastrakar, “How to do Face detection with dlib (HOG and CNN),” www.linkedin.com, 

Apr. 08, 2024. https://www.linkedin.com/pulse/how-do-face-detection-dlib-hog-cnn-tejas-

shastrakar-lsaue (accessed May 24, 2024). 

 

[34] S. Singh, “A Step-by-Step Guide to Face Detection with the dlib Library,” Medium, Oct. 

02, 2023. https://medium.com/@sukanyasingh303/a-step-by-step-guide-to-face-detection-

with-the-dlib-library-2e8f6429e632 

 

[35] S. R. Rath, “Face Detection with Dlib using CNN,” DebuggerCafe, Jul. 05, 2021. 

https://debuggercafe.com/face-detection-with-dlib-using-cnn/ (accessed May 24, 2024). 

 

[36] SPARKLERS : We Are The Makers, “Face Recognition Based Complete Attendance 

System with Database and Webpage using PC or Raspberry Pi,” YouTube, Sep. 05, 2023. 

https://www.youtube.com/watch?v=qeHXHphI9cg (accessed May 24, 2024). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://pyimagesearch.com/2021/04/19/face-detection-with-dlib-hog-and-cnn/
https://medium.com/@sukanyasingh303/a-step-by-step-guide-to-face-detection-with-the-dlib-library-2e8f6429e632
https://medium.com/@sukanyasingh303/a-step-by-step-guide-to-face-detection-with-the-dlib-library-2e8f6429e632


93 

 

8- Appendix 

 
Appendix 1 (“Flask.py”): 
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Appendix 2 (“feature extraction.py”): 
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Appendix 3 (“face recognize.py”): 
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