

ACKNOWLEDGEMENT

ii

Abstract

The Smart Classroom Attendance System developed in this project represents a solution designed

to enhance the efficiency and accuracy of attendance tracking in educational settings. This system

outlines the attendance-taking process by adding advanced technologies such as CNN

(Convolutional Neural Network) and the dlib library for face detection, feature extraction, and

recognition. The system aims to address specific objectives: achieving high accuracy in identifying

multiple individuals simultaneously from a distance greater than three meters, verifying ten

individuals in a single frame, and implementing real-time processing with a target time of 3 to 6

seconds.

This project investigates the performance of the facial recognition system under various parameters,

including distance and the number of faces in the frame. The system addresses the challenges faced

in typical classroom settings for taking attendance by detecting and recognizing multiple faces in

real-time. It efficiently manages student identities, aligns faces for recognition, and updates

attendance records in real time, contributing to a more interactive and data-driven educational

environment.

Despite its advantages, the system faces limitations related to computational complexity and

hardware constraints, which impact the processing time and accuracy, especially under varying

distances and different distributions of faces detected. These challenges require ongoing refinement

and adaptation to ensure the system's reliability and accuracy. Moreover, this project lays the

foundation for the development of smarter classrooms, where technology optimizes administrative

tasks, allowing educators to focus on their core mission of teaching. As the system continues to

evolve through user feedback and performance improvements, it has the potential to revolutionize

attendance tracking and contribute to the ongoing transformation of educational technology.

iii

Table of Contents

Acknowledgement ... i

Declaration of Originality and Exclusiveness.. ii

Abstract .. iii

Table of Contents ... iv-vi

List of Tables ... vi-vii

List of Figures ... vii-x

Chapter 1: Introduction ... 1-3

1.1 Project Background ... 1-2

1.2 Problem Statement .. 2-3

1.3 Project Objectives .. 3

Chapter 2: Literature Review .. 4-34

2.1 Student Attendance System ... 4-5

2.2 Deep Learning ... 5-6

2.3 Transfer Learning .. 6

2.4 Comparison between Deep Learning and Transfer Learning Performance 7-8

2.5 Face Detection Techniques ... 9-16

2.5.1 Viola-Jones Algorithm ... 10-11

2.5.2 Histogram of Oriented Gradients (HOG) ... 11-12

2.5.3 Cascade Classifier ... 13

2.5.4 Scale-Invariant Feature Transformer (SIFT) .. 13-14

2.5.5 Local Binary Patterns (LBP) .. 15-16

2.6 Face Recognition Techniques ... 16-30

2.6.1 Eigenfaces... 17-18

2.6.2 Fisherfaces (Linear Discriminant Analysis)).. 19-20

2.6.3 Local Feature-Based Methods (SURF) .. 20-22

2.6.4 Facial Landmark-Based Methods ... 22-24

2.6.5 3D Face Recognition .. 25-27

2.6.6 Multimodal (Fusion) Approaches... 28-30

2.7 Existing Project Methodology .. 31

2.8 Summary ... 32-34

Chapter 3: Methodology... 35-47

3.1 Overall System Design .. 35-37

3.2 Hardware Design .. 37

3.3 Software Design .. 38-47

3.3.1 Flask Web Server (“Flask.py”).. 38

3.3.2 Feature Extraction (“feature extraction.py”) ... 39

3.3.3 Image Processing and Face Recognition (“face recognize.py”) 39-40

3.3.4 Image Pre-Processing ... 40-42

3.3.5 Face Detection Algorithm .. 42-44

3.3.6 Face Recognition Algorithm .. 44-46

3.3.7 Data Interfacing .. 47

Chapter 4: Implementation and Testing... 48-76

4.1 UML Diagram ... 48-49

4.2 Flowchart ... 49-50

4.3 Hardware Implementation .. 51

4.4 Software Implementation .. 52-58

4.5 Testing ... 58-69

4.5.1 Face Detection and Recognition with Different Distance 59-62

4.5.2 Face Detection and Recognition with Different Numbers of Students 63-64

4.5.3 Face Detection and Recognition Results .. 65-69

4.6 User Interface .. 70-76

4.6.1 Mobile Devices Interface ... 70-73

4.6.2 Laptop Interfaces .. 74-76

Chapter 5: Results and Discussion .. 77-84

5.1 Results and Analysis ... 77-80

5.1.1 Distance Test .. 77-78

5.1.2 Number of Students Test .. 78-79

5.1.3 Processing Time Test ... 79-80

5.2 Discussion ... 80-84

Chapter 6: Project Management ... 85-86

Chapter 7: Conclusion .. 87-88

7.1 Achievements .. 87-88

7.2 Recommendations for Future Work ... 88

Chapter 8: List of References .. 89-92

Chapter 9: Appendix .. 93-98

List of Tables

Table 1: Comparison table between various biometric systems .. 5

Table 2: Comparison table between performance of deep learning and transfer learning 7-8

Table 3: Comparison table between various face detection techniques 32

Table 4: Comparison table between various face recognition techniques 33-34

Table 5: Comparison table between existing methodologies .. 34

Table 6: Image pre-processing steps and description ... 40-41

Table 7: Sample images for distance test .. 60-61

Table 8: Sample images for number of students test .. 63-64

Table 9: Accuracy table with sample test images according to distances 77

Table 10: Performance metrics of facial recognition system by number of students 78

Table 11: Relationship between distance and processing time .. 79

Table 12: Achievements of objectives ... 87

List of Figures

Figure 1: Example of face detection looks likes .. 9

Figure 2: A demonstration of Viola-Jones algorithm .. 11

Figure 3: Steps involved when computing HOG ... 12

Figure 4: Process of Cascade Classifier .. 13

Figure 5: SIFT algorithm overview ... 14

Figure 6: Applying LBP operation .. 16

Figure 7: Extracting histograms ... 16

Figure 8: Training pipeline of eigenfaces .. 18

Figure 9: Test pipeline of eigenfaces ... 18

Figure 10: Example of an image represented as linear combinations of eigenfaces 18

Figure 11: Gaussian partial derivative in xy .. 21

Figure 12: Gaussian partial derivative in y .. 22

Figure 13: DLib landmark points on face ... 23

Figure 14: MTCNN architecture .. 23

Figure 15: Landmark detection using MTCNN ... 24

Figure 16: Mediapipe face landmark detection ... 24

Figure 17: 3D face model .. 27

Figure 18: Early fusion or data-level fusion .. 30

Figure 19: Late fusion or decision fusion .. 30

Figure 20: Intermediate fusion ... 30

Figure 21: Overall system block diagram .. 35

Figure 22: System hardware design ... 37

Figure 23: Web Framework for Python ... 38

Figure 24: Dlib + OpenCV .. 39

Figure 25: Face Recognition .. 39

Figure 26: Image after pre-processing .. 41-42

Figure 27: Example of CNN-based face detection using dlib ... 42

Figure 28: Example of detected facial landmarks on faces ... 43

Figure 29: Example of visual representation of 128-dimensional descriptors computed for

faces ... 44

Figure 30: Simple architecture of CNN ... 44

Figure 31: Visualization of ResNets .. 45

Figure 32: Example of 128 embeddings value for an image ... 46

Figure 33: UML Diagram .. 48

Figure 34: Flowchart of the overall system ... 49

Figure 35: Redmi Note 9 Pro ... 51

Figure 36: ASUS TUF Gaming F15 2022 ... 51

Figure 37: Python logo... 52

Figure 38: OpenCV logo .. 52

Figure 39: Flask logo ... 53

Figure 40: Dlib logo ... 54

Figure 41: Numpy logo .. 54

Figure 42: Pandas logo... 55

Figure 43: Scipy logo ... 55

Figure 44: Tkinter logo .. 56

Figure 45: Python Time module .. 56

Figure 46: Python OS module.. 57

Figure 47: JetBrains Pycharm logo .. 57

Figure 48: Classroom used for testing ... 59

Figure 49: Classroom distance setup ... 62

Figure 50: Example of distance measurement ... 62

Figure 51: Sample output image for 2m ... 65

Figure 52: Sample output image for 3m .. 65

Figure 53: Sample output image for 4m .. 66

Figure 54: Sample output image for 5m .. 66

Figure 55: Sample output image for 4 students ... 67

Figure 56: Sample output image for 6 students .. 67

Figure 57: Sample output image for 8 students .. 68

Figure 58: Sample output image for 10 students .. 68

Figure 59: Sample user prompt output image for 10 students ... 69

Figure 60: Output image and generated Excel file from the sample of 10 students 69

Figure 61: Wi-Fi connection in laptop and mobile device .. 70

Figure 62: Starting the Flask server ... 70

Figure 63: QR code for IP address ... 71

Figure 64: Homepage design (mobile view) .. 71

Figure 65: Application page with single or multiple selection (mobile view) 72

Figure 66: Output displayed on webpage (mobile view) ... 73

Figure 67: Output of Flask server .. 74

Figure 68: Homepage design (laptop view) ... 74

Figure 69: Application page with single or multiple selection (laptop view).......................... 75

Figure 70: Proof that all images selected have been saved in the folder of laptop 76

Figure 71: Graph of distance vs accuracy .. 80

Figure 72: Graph of the number of students captured vs processing time 81

Figure 73: Graph of the number of students captured vs accuracy .. 82

Figure 74: Graph of distance vs processing time ... 83

Figure 75: Grant chart of the project preparation .. 85

Figure 76: Grant chart of the project realisation ... 85

x

1

1-Introduction

1.1 Project Background

In the age of digital transformation, educational institutions are looking for creative ways to

improve efficiency, simplify administrative procedures, and create a more engaging, data-

driven learning environment. The effective monitoring of student attendance, previously done

manually and prone to errors, is an essential component of this change. Conventional

techniques for recording attendance, including manually calling names or keeping paper

records, are both fraught with difficulties. They are labor-intensive, prone to human mistakes,

and do not have the real-time functionality required in today’s classrooms. The need for an

automated and accurate attendance recording system becomes even more crucial in the typical

classroom setting, where a small group of students may be present. Instructors often use

clickers or register manually for attendance recording, which has led to inefficiencies and

potentially inaccurate data a few decades ago.

With the evolution of digital technology, there are now more ways to handle these issues, such

as face recognition technology. Many institutions still encounter the same issues with their

current attendance record systems, even though some of them are switching to digital

attendance solutions. These restrictions on the attendance systems often include poor accuracy,

delays in updating records, and a deficiency of up-to-date information for instructors. Moreover,

these systems are less effective because they frequently need human assistance. Stakeholders

in this project include educational institutions, instructors, and students. Accurate attendance

tracking is crucial for institutions to meet regulatory requirements and improve resource

allocation. Instructors benefit from having real-time attendance data, allowing them to adapt

their teaching methods as needed. For students, the system ensures fairness and accountability

in attendance recording.

The "Medium Range Facial Recognition for Attendance Recording" project aims to address

the urgent need for an automated, effective, and precise solution for attendance recording in

educational institutions. This project aims to build a system that can identify many people at

once from a distance of more than 3 meters using facial recognition technology. The system

integrates with a web server using the Flask framework, which manages HTTP requests and

routing data. Instructors and administrators can review and manage the attendance records in

an accessible format by automatically recording the recognized faces in an Excel spreadsheet.

2

This project represents a significant step toward the digital transformation of educational

institutions' attendance recording systems. It aims to optimize administrative tasks, reduce the

burden on educators, and provide a reliable and scalable solution for attendance tracking. In

addition, the project also intends to increase data accuracy, lessen administrative burden, and

improve the overall educational experience for instructors and students by automating

attendance tracking and incorporating real-time capabilities.

1.2 Problem Statement

The majority of student attendance in nowadays educational settings is still recorded by hand

using conventional methods. These traditional techniques have been around for a long time and

still rely on name-calling, paper registers, and rudimentary clickers. They have proven helpful

in monitoring attendance, but they have certain inherent issues that prohibit educational

institutions from advancing into the digital era. The major problem with traditional methods of

taking attendance is time-consuming and laborious. Time spent teaching is not supposed to be

wasted on the task of manually recording every student's presence or absence in a classroom.

This labor-intensive procedure is prone to error, which makes it challenging for institutions to

administratively reconcile inequalities and produces erroneous attendance records.

Moreover, the current state of attendance tracking is out of step with the needs of current

educational environments. It lacks the real-time functionality that modern learning

environments require. It is common for instructors to encounter delays in updating attendance

records, which impedes their ability to obtain immediate insights regarding student

engagement. This knowledge is essential for effectively tailoring instructional strategies to

each student's needs. Furthermore, the existing attendance tracking is not up to date with the

changing requirements of educational settings. It doesn't have the necessary real-time features

that contemporary learning environments demand. Inefficiency and resource misallocation

might result from inaccurate recordkeeping. The major educators, the instructors, are also

impacted by the existing state of attendance tracking. Taking attendance manually removes

them from their primary responsibility, which is to deliver excellent education to students. They

are unable to evaluate student participation in class and adjust their teaching methods in real-

time due to inaccurate or delayed attendance data which brings substantial effects.

3

Apart from that, the end users of education are the students who are impacted. There has never

been a greater need for an automatic, accurate, and effective way to check student attendance

in the classroom. The "Medium Range Facial Recognition for Attendance Recording" project

aims to solve these issues by automating attendance tracking and including real-time

capabilities. The suggested solution makes use of face recognition technology to identify many

people at once from a distance larger than three meters with an approximate accuracy rate of

93%. However, there are substantial technological obstacles in maintaining this precision in

different classroom settings and at different distances.

Additionally, the system aims to verify ten individuals in a single frame which requires strong

image processing methods and a significant amount of processing power. Targeted processing

times of 3 to 6 seconds were set for multi-face detection and recognition; however, preliminary

investigations reveal that this goal is difficult to meet because of the computational burden

associated with processing high-resolution photographs over long distances. The system is

always being optimized to speed up processing. To address these technical requirements, the

system interfaces with a web server using the Flask framework, enabling efficient data handling

and real-time processing. The system gives instructors and administrators a user-friendly

approach to monitor attendance by automatically recording recognized faces into an Excel

spreadsheet.

1.3 Problem Objectives

Under the problem stated in Chapter 1.2, a set of project objectives to address the matter has

been formulated. These objectives are as shown below:

1. To develop a facial recognition system that can identify multiple individuals

simultaneously at 93% accuracy with greater distances than 3 meters.

2. To establish a facial recognition system that can verify 10 individuals in one frame.

3. To implement a real-time facial recognition system that has a processing time of 3 to

6 seconds for multi-face detection and recognition.

4

2-Literature Review

2.1 Student Attendance System

Attendance tracking is a significant aspect of the educational system to ensure that students are

actively participating in classes and fulfilling their academic obligations. Traditional

attendance-taking methods often rely on manual processes, which can be labor-intensive, error-

prone, and inefficient in adapting to the demands of modern education. This section explores

various types of student attendance systems.

Next, various types of student attendance systems have been widely applied worldwide. All of

those systems are named biometric attendance systems including facial recognition, fingerprint

recognition, iris recognition, and voice recognition. They offer high accuracy and eliminate the

possibility of proxy attendance. However, they have pros and cons at the same time.

Fingerprint recognition gives high accuracy and is widely accepted. However, it takes time for

the verification process so the user has to line up and perform the verification one by one. Thus,

it is inefficient in this case, especially when quick or mass verification is needed. After that,

iris recognition is accurate but requires the collection of detailed information, which has

invaded user privacy. The need for such detailed information can make users hesitant to use

this technology due to privacy invasion concerns. Hereafter, voice recognition is less accurate

compared to other recognition systems. Thus, it is not considered as the suitable method to

apply as attendance tracking for students while the RFID card system can be implemented due

to its simplicity. However, the user might tend to help their friends to check in as long as they

have their friend’s ID card. Hence, facial recognition is suggested to be implemented in the

student attendance system with human faces exposed and contains less detailed information

compared to iris recognition.

5

System type Advantage Disadvantage

Fingerprint

recognition

High accuracy, widely accepted

and used, fast recognition process

Fingerprint can be altered/ damaged,

sensitive to environmental

conditions, privacy concerns

Facial

recognition

User-friendly, applicable, no

physical contact needed

Accuracy can be affected according

to facial appearance changes,

vulnerable to spoofing, privacy

concerns

Iris

recognition

High accuracy and security, stable,

reliable with age, unique and

difficult to forge

High cost, invasive, limited use in

low-light environment

Voice

recognition

Non-intrusive, convenient for

user, can be combined with other

biometrics system, applicable in

phone-based and IoT applications

Vulnerable to audio recordings,

accuracy affected by background

voice, user variability

RFID card

system

Easy to use and implement, cost-

effective, no privacy concerns

related to biometric data

Cards can be lost or stolen, potential

for card sharing or “buddy

punching”, requires distribution and

maintenance of physical cards

Table 1: Comparison table between various biometric systems

2.2 Deep learning

Deep learning, a subset of machine learning and artificial intelligence (AI), mimics the way

humans acquire knowledge, particularly in recognizing patterns across diverse data types like

photos, text, and audio. It excels in automating tasks that traditionally require human

intelligence, such as image description and audio transcription. This approach proves pivotal

in data science, offering data scientists a faster and more efficient means of collecting,

analyzing, and interpreting large datasets.

In essence, deep learning constructs neural networks with multiple interconnected layers, akin

to the human brain’s network of neurons. The process involves data collection and pre-

processing, employing deep convolutional neural networks for feature extraction, data

augmentation to enhance diversity, and training/validation phases for model refinement.

Ensemble learning, combining multiple models, further boosts accuracy and robustness.

6

Deep learning’s significance lies in its applications, including digital assistants, fraud detection,

and facial recognition, with high accuracy critical for safety-centric applications like

autonomous cars and medical devices. The methodology involves training models on vast

labeled datasets, and its efficacy is demonstrated through advancements in face recognition,

and handling variations in lighting, pose, and expression.

While deep learning benefits from automatic feature learning and pattern discovery, challenges

arise from biases in training data, learning rate management, and demanding hardware

requirements. Despite limitations, deep learning finds applications in customer experience, text

generation, aerospace, military, industrial automation, colorization of media, and computer

vision. Ongoing advancements in the field continue to shape its potential applications, making

deep learning a dynamic force in various industries. [6]

2.3 Transfer learning

Transfer learning, a widely adopted technique in deep learning, involves repurposing a pre-

trained model for a new problem. This approach is particularly popular in scenarios where

obtaining large labeled datasets is challenging, which is often the case in real-world

applications. Essentially, transfer learning leverages the knowledge gained from solving one

task to enhance the generalization capabilities for another related task. For instance, a classifier

trained to recognize backpacks can use its knowledge to identify other objects like sunglasses.

In practice, the method involves transferring the learned weights from one task (Task A) to a

new task (Task B), allowing the model to build upon previously acquired patterns. Transfer

learning finds extensive application in computer vision and natural language processing tasks,

such as sentiment analysis, owing to its efficiency in handling complex models that demand

substantial computational power. It stands out for its ability to save training time, enhance

neural network performance, and operate effectively with limited data. The decision to employ

transfer learning arises when there is insufficient labeled data, and a pre-trained network on a

related task with ample data already exists. The technique proves valuable when the inputs for

both tasks are the same. Approaches to transfer learning include training a model to reuse it,

using a pre-trained model, and feature extraction. Popular pre-trained models, like Inception-

v3, ResNet, and AlexNet, further facilitate the adoption of transfer learning in various

applications. [7]

7

2.4 Comparison between deep learning and transfer learning performance

Deep learning and transfer learning are two prominent techniques within the field of machine

learning that have revolutionized the way models are developed and deployed for various tasks.

Both approaches have their unique advantages and use cases. In this section, we will make a

comparison between deep learning and transfer learning in a paragraph and a table.

Deep learning, a subset of machine learning, involves training complex neural networks on

vast datasets to learn representations and patterns directly from the data. It is a data-hungry

approach, requiring substantial amounts of labelled data and significant computational

resources. Deep learning models are including deep neural networks (DNNs), convolutional

neural networks (CNNs), and recurrent neural networks (RNNs). They are designed to handle

specific tasks, ranging from image classification to natural language understanding. While deep

learning models excel at tasks they were originally trained for, they often require lengthy

training times and massive datasets to achieve high accuracy.

Transfer learning enhances the power of deep learning by utilizing knowledge gained from pre-

trained models. These models undergo initial training on diverse and extensive datasets,

enabling them to encompass a wide range of features and representations. Transfer learning

adapts these pre-trained models to new, related tasks with smaller datasets. It reduces the need

for extensive training and large datasets, resulting in faster convergence and often superior

performance. By fine-tuning pre-trained models, or simply using their features as a starting

point, transfer learning empowers machine learning practitioners to address specific problems

efficiently, from image recognition to natural language processing.

Aspect Deep Learning Transfer Learning

Training data Requires large labeled

datasets specific to the

target task

Can adapt to face recognition tasks with

smaller datasets, leveraging pre-trained

models

8

Computational

Resources

Demands substantial

computational power and

training time for custom

face recognition models

Reduces computational requirements by

building on pre-trained models, enabling

faster model development

Model

Complexity

Employs custom deep

neutral networks designed

for face recognition, which

can be complex and

resource-intensive

Adapts pre-trained models as a starting-

point, simplifying model architecture

while maintaining performance

Generalization Achieves high accuracy

with extensive training

data but might struggle

with limited data or

variations

Excels at face recognition tasks with

limited data and challenging variations,

thanks to pre-trained models

Data

Efficiency

Inefficient when the target

face recognition task has a

scarcity of labeled data

Efficiently handles limited labeled data by

leveraging pre-trained models and faster

convergence

Real-World

Use Cases

Applied in various face

recognition scenarios, such

as security, attendance

systems, and access

control

Beneficial in real-world scenarios where

labeled face data is scarce or fast model

deployment is essential

Table 2: Comparison table between performance of deep learning and transfer learning

In summary, deep learning models developed for face recognition are powerful when they have

access to large, task-specific datasets and computational resources. They can achieve high

accuracy in ideal conditions. However, transfer learning in face recognition excels when

dealing with challenging real-world scenarios, limited labeled data, or when rapid deployment

is a priority. By leveraging pre-trained models, transfer learning bridges the gap between the

need for high accuracy and the constraints of real-world applications, making it a valuable

approach in the field of face recognition.

9

2.5 Face detection techniques

Face detection is a computer vision task that involves identifying and locating human faces

within digital images or video frames. The primary goal of face detection is to determine the

presence, position, and often the size and orientation of one or multiple faces in a given visual

input. It's important to distinguish face detection from face recognition. Face detection focuses

on finding faces in an image or video, whereas face recognition involves identifying and

matching those detected faces to specific individuals.

In addition to detecting faces, face detection typically provides information about the position

of the detected faces, often expressed as bounding boxes (rectangular regions) around each

face. These bounding boxes indicate where the faces are located in the image. The picture

below shows the example of how bounding boxes look like.

Figure 1: Example of face detection looks like

However, face detection can be a challenging task due to variations in lighting, pose,

expression, and occlusion (when part of the face is obscured). Advanced face detection

algorithms are designed to handle these challenges. Various types of algorithms and techniques

are used for face detection, ranging from traditional methods like Haar cascades to more

advanced deep learning-based approaches using convolutional neural networks (CNNs). Those

algorithms and techniques are discussed in the small section following. Popular deep learning-

based face detection models include Single Shot MultiBox Detector (SSD) and You Only Look

Once (YOLO). [8]

10

2.5.1 Viola-Jones Algorithm

Object detection stands as a pivotal domain within computer vision, finding applications in

diverse fields such as security systems, human-computer interaction, and image and video

editing. A prominent framework in this realm is the Viola-Jones algorithm, specifically tailored

for face and eye detection. Conceived by Paul Viola and Michael Jones in 2001, this algorithm

is distinguished for its speed and efficiency, anchored in the ingenious combination of Haar-

like features and the AdaBoost machine learning algorithm.

At its core, Haar-like features serve as the foundation of the Viola-Jones algorithm. These

features are simplistic, rectangular calculations derived by subtracting the sum of pixel

intensity values in a white region from the sum of intensity values in a black region. AdaBoost,

on the other hand, plays a pivotal role as a machine learning algorithm that amalgamates

multiple weak classifiers into a robust and accurate classifier.

The operational workflow of the Viola-Jones algorithm unfolds through a systematic series of

steps. The process commences with the generation of an extensive set of Haar-like features,

systematically computed across varied scales and locations within an image. Subsequently,

AdaBoost is employed to discern the most salient features from this set and to train a classifier,

harnessing the power of these selected features. The trained classifier then navigates through

the image, utilizing a sliding window technique to evaluate the presence of an object. Upon

detection, the window undergoes resizing, and the iterative process continues until the object

is precisely located.

A compelling feature of the Viola-Jones algorithm lies in its expeditious execution, attributed

to the utilization of an integral image representation. This representation enables rapid

calculation of Haar-like features, contributing to the algorithm's impressive speed.

Additionally, the incorporation of the AdaBoost learning algorithm further enhances efficiency

by facilitating the training of a potent classifier with a reduced number of features, thereby

minimizing computational demands.

In essence, the Viola-Jones algorithm stands as a cornerstone in object detection

methodologies, showcasing a harmonious blend of Haar-like features and AdaBoost to achieve

rapid and accurate detection of faces and facial features in images. Its versatile applications

11

across various domains underscore its significance in advancing computer vision capabilities,

offering a glimpse into the nuanced intricacies of this pioneering algorithm. [9]

Figure 2: A demonstration of Viola-Jones algorithm

2.5.2 Histogram of Oriented Gradients (HOG)

The Histogram of Oriented Gradients (HOG) stands as a pivotal feature extraction technique

within the realms of computer vision and image processing, finding extensive applications in

the domains of object detection and image recognition. In the intricate landscape of computer

vision tasks, where the representation of complex visual data in a meaningful and concise

manner is paramount, HOG emerges as a robust solution by honing in on the distribution of

gradient orientations within an image. This focus on capturing local intensity gradients and

their orientations proves instrumental in characterizing object shapes and structures.

The HOG algorithm, a multi-step process, commences with image pre-processing to bolster its

resilience against lighting variations and noise. This often involves converting the input image

to grayscale, normalizing pixel intensities, and applying contrast normalization. The

subsequent step involves the computation of gradient magnitudes and orientations of image

pixels, facilitating the identification of edges and texture boundaries crucial for subsequent

analysis.

Following gradient computation, the image is strategically partitioned into small, overlapping

cells, typically covering regions of 8x8 pixels. Within each of these cells, a histogram of

gradient orientations is computed, wherein the orientations undergo quantization into bins. This

histogram encapsulates the distribution of gradient orientations within the given cell.

Subsequently, these cells are grouped into larger blocks, often comprising 2x2 or 3x3 cells, and

normalization is applied within each block. This normalization step significantly enhances the

12

algorithm's robustness to changes in lighting conditions and contrast, contributing to its

adaptability in diverse scenarios.

The culmination of the HOG algorithm involves the formation of a comprehensive descriptor.

The normalized histograms from all blocks are concatenated to construct the final HOG

descriptor for the image. This descriptor serves as a powerful representation, capturing the

spatial distribution of gradients and their orientations across the entire image. The resulting

HOG descriptor provides a condensed yet rich characterization of the image's structural

features, making it particularly well-suited for subsequent tasks such as object detection and

image recognition.

In essence, the Histogram of Oriented Gradients algorithm unfolds as a meticulous and

systematic approach to feature extraction, leveraging the nuanced distribution of gradient

orientations to distill complex visual data into a form that is both meaningful and conducive

to diverse computer vision applications. [10]

Figure 3: Steps involved when computing HOG

13

2.5.3 Cascade Classifier

A Haar cascade classifier is a type of cascade classifier that is a machine learning object

detection program, that identifies objects in images and videos through four stages: calculating

Haar features, creating integral images for efficient computation, using Adaboost for feature

selection and training, and implementing cascading classifiers for efficient detection. This

algorithm necessitates a substantial dataset of positive and negative images for training. Haar

features involve calculations on adjacent rectangular regions within a detection window.

Integral images expedite these calculations by reducing operations, using sub-rectangles and

array references. Adaboost selects and trains the best features, combining weak classifiers into

strong classifiers. Cascading classifiers consist of stages with trained weak learners, quickly

rejecting negatives. Minimizing the false negative rate is crucial for effective object detection,

and Haar cascades, though effective, require careful hyperparameter tuning. [11]

Figure 4: Process of Cascade Classifier

2.5.4 Scale-Invariant Feature Transform (SIFT)

Scale Invariant Feature Transform (SIFT), introduced by D. Lowe in 2004, stands as a pivotal

feature extraction method in the realm of computer vision, specifically geared towards image

matching and object detection applications. This algorithm operates on key terminologies such

as Feature Extraction, which endeavors to reduce dataset features via a mapping function, Key

Points that denote spatially invariant locations highlighting significant image pixels, and

Descriptors, vectors delineating local surroundings around key points to establish associations

between images. The inclusion of Gaussian Blur, a method adept at noise reduction in images,

aids in efficient key point detection.

The advantages of SIFT underscore its locality, ensuring resilience against noise and clutter,

distinctiveness, enabling comparison with extensive datasets, quantity generation even from

14

diminutive objects, and noteworthy efficiency comparable to real-time performance. The

execution of SIFT involves several stages, commencing with Building the Scale-Space. This

entails applying Gaussian Blur to different scales of the original image, creating a multi-scale

representation that mitigates scale dependency.

The subsequent stage, the Difference of Gaussian (DoG), amplifies features by subtracting

higher-blurred from lower-blurred versions, resulting in a set of images for each octave. Key

Point Localization involves comparing pixel values in localities, classifying them as potential

key points only if they exhibit local extremum characteristics. To refine the generated key

points, criteria such as contrast and edge alignment are applied, yielding a set of legitimate key

points.

Orientation Assignment follows, involving the calculation of magnitude and orientation for

each key point. Histograms are then created to represent orientation against magnitude,

eliminating rotation and illumination dependencies. The final stage, Key Point Descriptor,

involves forming a 16x16 grid around each key point, generating histograms for sub-blocks,

and creating a feature vector. To eliminate rotation dependence, the gradient orientation

difference is computed, while illumination dependency is mitigated through thresholding and

normalization.

The culmination of SIFT lies in Key Point Matching, where the extracted key points serve as

robust elements for pattern matching in other images, underscoring the algorithm's significance

in object detection and image matching domains. Through its intricate steps, SIFT provides a

comprehensive and detailed methodology for feature extraction, contributing to the robustness

and adaptability of computer vision systems. [12]

Figure 5: SIFT algorithm overview

15

2.5.5 Local Binary Patterns (LBP)

Recognizing faces is a complex task for computers due to various challenges such as

illumination variation, low resolution, and occlusion. In the realm of computer-based face

recognition, the Local Binary Pattern (LBP) algorithm has emerged as a noteworthy technique.

First introduced in 1994, LBP combines statistical and structural methods to represent a facial

image. The step-by-step architecture of LBP involves four key parameters: Neighbors (defining

the number of samples to build the circular local binary pattern), Radius (representing the

radius around the central pixel), Grid X (determining the number of cells in the horizontal

direction), and Grid Y (specifying the number of cells in the vertical direction).

The process begins with the training of the algorithm using a dataset containing facial images,

each associated with a unique identifier. This identifier, whether a number or a name, plays a

crucial role in the algorithm's ability to recognize individuals. During training, photos of the

same person are assigned the same ID. Once trained, the LBP algorithm employs a sliding

window concept based on the specified radius and neighbor parameters to create an

intermediate image that accentuates facial characteristics.

In practical terms, the grayscale image is divided into pixels, and a window (e.g., 3x3) is

applied. This window is represented as a matrix, with the central pixel serving as the threshold

value. The neighboring eight pixels are assigned binary values (1 if greater than the threshold,

0 if less), resulting in a binary matrix. Converting this binary value into a decimal value yields

the central pixel's new intensity value, creating an image that better captures the original's

features.

Following this, the Grid X and Grid Y parameters are employed to divide the image into

multiple grids. As the generated image is grayscale, each pixel possesses a histogram with 256

positions. Concatenating these histograms produces a more comprehensive final histogram that

accurately represents the characteristics of the original image. This final histogram, a unique

signature for each image, facilitates the face recognition process.

In the face recognition stage, the trained algorithm utilizes the generated histograms from the

training dataset to represent each image. When presented with a new input image, the algorithm

repeats the process, creating a histogram that encapsulates its distinctive features. By

16

comparing this histogram with those from the training dataset, the algorithm identifies and

recognizes the individual depicted in the input image, showcasing the efficacy of the Local

Binary Pattern algorithm in tackling the complexities of facial recognition in computer vision.

[15]

Figure 6: Applying LBP operation

Figure 7: Extracting histograms

2.6 Face recognition techniques

Face recognition, also known as facial recognition, is a computer vision and biometric

technology that involves identifying and verifying individuals based on their facial features.

Unlike face detection, which focuses on locating faces in images or videos, face recognition

goes a step further by associating the detected faces with specific individuals.

Face recognition serves two primary purposes which are identification and verification. It

determines the identity of an individual by comparing their face to a database of known faces.

Besides, it also verifies whether the person claiming to be a specific individual matches the

stored reference face. In addition, face recognition systems analyze and extract facial features,

such as the distance between the eyes, the shape of the nose, and the arrangement of facial

landmarks such as eyes, nose, and mouth. These features are used to create a unique face

template or facial signature for each individual.

17

However, face recognition systems must deal with variations in lighting, pose, facial

expressions, and occlusions. There are various types of advanced algorithms are designed to

handle these challenges including traditional methods such as eigenfaces, as well as deep

learning-based approaches using convolutional neural networks (CNNs). Notable deep

learning models for face recognition include FaceNet and VGGFace. [16]

2.6.1 Eigenfaces

Eigenfaces, a representation learning method within the realm of computer vision with a

specific focus on facial images, operates on the premise of expressing a facial image as a linear

combination of fundamental images termed eigenfaces. The crux of eigenfaces lies in the

ability to discern optimal eigenfaces, thereby enabling the representation of any facial image

through a linear combination of these fundamental components.

To embark on the journey of computing eigenfaces, a substantial set of facial images serves as

the training dataset. A pivotal pre-processing step involves aligning facial features such as eyes,

nose, and mouth, coupled with normalizing lightness and pose. This strategic pre-processing

ensures that the algorithm can concentrate on the regions of the image pertinent to appearance,

discarding irrelevant facial elements. Subsequently, the images undergo transformation into

feature vectors encoding visual information. The covariance matrix of these vectors reveals

correlations among various facial features, forming the basis for deriving eigenfaces.

The algorithm delves into the computation of eigenvectors from the covariance matrix, defining

the latent space encapsulating facial variations. These eigenvectors then serve as the

foundational images for the eigenface representation of subsequent test facial images. The

training pipeline involves this intricate process, as illustrated in the provided diagram.

In the test phase, a new facial image undergoes transformation into a feature vector, followed

by projection into the space defined by the eigenvectors. The resulting projection coefficients

offer a concise representation of the face as a linear combination of the eigenfaces, as depicted

in the corresponding diagram.

18

Eigenfaces boast several advantages, notably their efficiency and compactness. The

coefficients derived from the eigenvectors are minimal, capturing the essential facial variations,

facilitating the representation of new images using a sparse set of numbers. This efficiency

proves valuable in diverse applications like search engines and security systems. Furthermore,

eigenfaces exhibit robustness to lighting and pose variations, a critical attribute in classification

tasks.

However, the method of eigenfaces is not without limitations. Its simplicity is accompanied by

a dependence on the quality of the training set, rendering it less robust in representing a broad

spectrum of facial images. The method excels in portraying faces akin to those in the training

set, urging the need for a diverse training dataset to account for this inherent characteristic.

Despite these limitations, the efficiency and compactness of eigenfaces position them as

valuable tools in various facial recognition applications. [17]

Figure 8: Training pipeline of eigenfaces

Figure 9: Test pipeline of eigenfaces

Figure 10: Example of an image represented as linear combinations of eigenfaces

19

2.6.2 Fisherfaces (Linear Discriminant Analysis)

In this comprehensive exploration, we delve into the intricacies of FisherFaces, an advanced

technique for face recognition that builds upon the foundation laid by EigenFaces. FisherFaces

leverages the combined power of Principal Component Analysis (PCA) and Linear

Discriminant Analysis (LDA) to enhance the accuracy and robustness of facial recognition

systems. The overarching steps in face recognition, including capturing, feature extraction, and

comparison, are outlined as the fundamental stages of this process.

OpenCV, a powerful computer vision library, provides three built-in face recognizers, namely

EigenFaces, FisherFaces, and Local Binary Patterns Histograms (LBPH). Our focus in this

article centers on FisherFaces, recognizing it as an improvement over EigenFaces. Before

delving into FisherFaces, a brief background on EigenFaces elucidates its algorithmic

approach. EigenFaces operates on the premise that not all parts of a face are equally crucial for

recognition, emphasizing regions of maximum variation, such as those between the nose and

eyes.

However, EigenFaces exhibits limitations, particularly in handling illumination as a significant

feature, leading to potential inaccuracies. To address these shortcomings, the article introduces

FisherFaces as an evolved version of the EigenFaces algorithm. FisherFaces acknowledges the

significance of illumination variations and strives to extract individual features separately,

preventing one person's facial data from unduly affecting others.

The FisherFaces algorithm, in essence, extracts principal components that distinguish one

individual from another. By employing Fisher Linear Discriminant (FLD) or Linear

Discriminant Analysis (LDA), it seeks to model the differences between classes, enhancing the

separation between individuals in the feature space. LDA, a dimensionality reduction

technique, aims to maximize the ratio of between-class scatter matrix to within-class scatter

matrix, exhibiting resilience to varying illumination conditions.

The FisherFaces algorithm proves advantageous in not explicitly capturing illumination

variations, offering a more refined approach compared to EigenFaces. Its core algorithmic steps

involve calculating scatter matrices, seeking a projection matrix to maximize class separability,

and solving the General Eigenvalue Problem to derive transformation matrices. Pseudocode

20

provides a structured representation of the FisherFaces algorithm, emphasizing its

implementation details.

To exemplify the application of FisherFaces, the article introduces the 'Yale Face Database' for

training, featuring grayscale images with varying facial poses. The process involves data

retrieval, image processing encompassing preprocessing and feature generation, and, finally,

the recognition process. The recognition phase hinges on successfully matching test images

with their corresponding training images, with the system exhibiting varying degrees of

accuracy based on the similarity between the two. In cases where the training and testing

images correspond, the system achieves a 100% recognition rate, while in scenarios where the

images differ but belong to the same person, recognition rates of up to 90% are attained.

In summary, FisherFaces emerges as a sophisticated solution, addressing the limitations of

EigenFaces in facial recognition. Its nuanced approach to feature extraction and recognition

positions it as a valuable tool in computer vision applications, particularly in scenarios with

varying illumination conditions and diverse datasets. [18]

2.6.3 Local Feature-Based Methods (SURF)

The Speeded Up Robust Features (SURF) method represents a significant advancement in the

realm of image feature detection and matching, renowned for its speed and robustness. This

algorithm, introduced in the Ph.D. thesis of H. Bay at ETH Zurich in 2009, builds upon the

principles of Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA).

The primary focus of SURF is on providing a quick and accurate means of generating local,

similarity-invariant representations for images, facilitating real-time applications like object

recognition and tracking.

The SURF framework comprises two fundamental steps: feature extraction and feature

description. In the feature extraction phase, interest points are detected using a Hessian matrix

approximation. Integral images, introduced in 1984, play a crucial role in the computation of

box-type convolution filters, enabling fast and efficient calculations of pixel value sums within

rectangular regions. The Hessian matrix-based interest point selection relies on the determinant

of the Hessian matrix, integrating information about both location and scale. Despite

21

discretization and cropping limitations associated with Gaussian filters, SURF overcomes these

challenges by employing box filters and maintaining fast convolution capabilities.

Scale-space representation, a common implementation in image pyramids, is achieved

differently in SURF. The algorithm, leveraging box filters and integral images, foregoes

iterative filtering and applies filters of varying sizes directly to the original image. This unique

approach allows for parallel processing and efficient up-scaling of filter sizes without the need

for iterative image size reduction. The feature extraction step involves non-maximum

suppression in a 3×3×3 neighborhood to localize interest points across the image and scales.

Moving to feature description, SURF's creation of descriptors occurs in two distinct steps. The

first step involves determining a reproducible orientation for the interest points by calculating

Haar-wavelet responses in both x and y directions within a circular neighborhood around the

keypoint. The orientation with the maximum sum of responses is chosen as the main

orientation. The second step entails constructing a square region centered around the keypoint

and aligned with the chosen orientation. This region is divided into smaller sub-regions, and

for each sub-region, simple features are computed at regularly spaced sample points. The

responses are weighted with a Gaussian to enhance robustness, and the resulting descriptor

vector captures the intensity structure of each sub-region.

In essence, SURF's prowess lies in its ability to achieve speed and robustness through

innovative techniques such as box filters, integral images, and parallel processing. This method

significantly improves computation efficiency while maintaining accuracy, making it a

valuable tool in various computer vision applications. [20]

Figure 11: Gaussian partial derivative in xy

22

Figure 12: Gaussian partial derivative in y

2.6.4 Facial Landmark-Based Methods

Facial landmark detection algorithms play a pivotal role in automatically pinpointing key facial

landmark points, such as the nose tip, eye corners, eyebrows, and chin tip, within facial images

or videos. These algorithms find application in a variety of tasks, including face swap, head

pose detection, detecting facial gestures, and gaze direction determination. The process of

landmark detection involves two primary steps: face detection and landmark detection within

the identified face bounding rectangle.

These algorithms are categorized based on facial appearance and shape patterns into three

major types: holistic methods, Constrained Local Model (CLM) methods, and regression-based

methods. Holistic methods explicitly model overall facial appearance and global facial shape

patterns, while CLMs rely on local facial appearance and global shape patterns. Regression-

based methods use holistic or local appearance information and may implicitly embed global

facial shape patterns for joint landmark detection. Recent advancements involve combining

deep learning models with global 3D shape models for more accurate landmark detection.

Several popular models are employed for facial landmark detection, with notable examples

being the FacemarkLBF model from OpenCV, Dlib model, MTCNN model (Multi-task

Cascaded Convolutional Networks), and the Mediapipe model developed by Google. The

FacemarkLBF model returns 68 landmarks for each detected face, facilitating tasks such as

face alignment and feature localization. Dlib offers a pre-built model,

shape_predictor_68_facemarks.dat, providing 68 feature points. MTCNN, a deep learning

architecture, employs cascaded convolutional networks for both face detection and landmark

23

localization, detecting five key facial landmarks. Mediapipe, developed by Google, uses a

holistic model to detect face and hand landmarks, providing 468 face landmarks along with

hand landmarks.

Despite the progress in facial landmark detection, challenges persist due to factors such as

diverse facial expressions, varying head poses, environmental conditions like illumination

changes, and occlusion by other objects. Ongoing research endeavors aim to address these

challenges and further enhance the accuracy and robustness of facial detection and landmark

localization algorithms. As the field continues to evolve, the quest for a model that excels in

performance across diverse conditions remains an active area of exploration. [21]

Figure 13: DLib landmark points on face.

Figure 14: MTCNN architecture

24

Figure 15: Landmark detection using MTCNN

Figure 16: Mediapipe face landmark detection

25

2.6.5 3D Face Recognition

In the contemporary era where our lives are intricately interwoven with digital platforms, the

imperative of safeguarding personal information has never been more pronounced. With

projections estimating cybercrime to cost the world $6 trillion annually by 2021, conventional

security measures like passwords and PINs are proving insufficient. The protection of sensitive

information and personal identities has become paramount, underscored by the escalating

incidences of identity fraud and spoof attacks. In response to these challenges, 3D face

recognition emerges as a transformative technology in the realm of digital security.

Three-dimensional face recognition, also referred to as 3D facial recognition, stands out as an

innovative method within the broader landscape of facial recognition. It leverages the inherent

3D structure of the human face to establish a definitive identity, setting it apart from traditional

2D approaches. Unlike 2D methods, 3D face recognition involves a meticulous process of 3D

face reconstruction, introducing a heightened level of accuracy and performance that even

surpasses fingerprint recognition.

Consider the unique facial features such as ridges, nose bridges, and indentations. While 2D

images may capture facial patterns, they fall short in representing these depth-related

intricacies. The efficacy of the 3D face recognition system hinges on its adept utilization of

data. Researchers employ 3D face scans and extensive databases to craft detailed 3D face

models capable of sophisticated pattern analysis, encapsulating intricate facial details like

lighting conditions, poses, and expressions.

The superiority of 3D face recognition over its 2D counterpart is rooted in its prowess in pattern

recognition, capturing and analyzing the depth of the human face. Unlike 2D methods reliant

on flat images, 3D face recognition utilizes a comprehensive 3D face model, thereby

capitalizing on the intrinsic 3D geometry of the human face. This approach provides a

formidable defense against challenges such as changing lighting conditions, diverse facial

expressions, and varying head angles.

Central to the success of 3D face recognition is the pivotal role played by artificial intelligence

(AI). Advanced algorithms conduct intricate pattern analysis on the 3D facial data, ensuring

robust recognition even amidst variations in pose and changes in illumination. A noteworthy

26

study from the University of York underscores the substantial improvement in facial

recognition results achieved through 3D models compared to 2D images. The amalgamation

of depth analysis and AI algorithms renders the system highly adaptable and accurate.

Imagine a scenario involving twins with nearly identical facial features attempting to access a

security system. While a 2D system might falter due to their striking resemblances, 3D face

recognition discerns between subtle facial depth differences, ensuring correct identification.

The operational workflow of 3D face recognition encompasses face detection, facial landmarks

identification, feature extraction, and verification. From capturing 3D facial data and analyzing

depth and curvature features to mapping every facial detail into a digital signature for

verification, the process is swift and secure. In scenarios such as airport security equipped with

3D face recognition, a traveler's identity is seamlessly validated by cross-referencing it with

global databases in milliseconds.

The transition from 2D to 3D face recognition signifies a seismic shift in authentication

accuracy. Unlike 2D approaches reliant solely on visual characteristics, 3D face reconstruction

employs the intricate geometry of the face for identification, resulting in enhanced accuracy.

This shift brings forth a multitude of benefits, including resilience to spoofing, improved

robustness in challenging conditions, and the strength of 3D liveness detection.

Facial recognition, while powerful, is not foolproof, with sophisticated cyber-attacks using

high-resolution photos or videos occasionally tricking systems. Here, the strength of 3D

liveness detection becomes pivotal. By adding an extra layer of facial geometry and monitoring

real-time presence, it ensures interactions with a real, live human, thwarting attempts based on

photographs or videos.

In real-world applications, 3D face recognition finds substantial utility across diverse sectors.

In the financial sector, banks like HSBC streamline authentication processes and reduce

fraudulent access attempts using facial recognition. In e-commerce and retail, exemplified by

Amazon's Go stores, 3D facial recognition enhances frictionless shopping experiences,

ensuring accurate billing without manual intervention. Moreover, in aviation, airports like

Changi in Singapore lead the way by pioneering facial recognition for smoother boarding

processes, ensuring the person boarding is the rightful ticket holder.

27

When considering a partner for facial recognition surveillance, FACIA emerges as a leader in

implementing biometric solutions for enhanced security. The seamless integration of face

recognition with 3D liveness detection ensures the authenticity of users' identities. Their

solutions, driven by artificial intelligence, encompass AI-powered facial recognition, liveness

detection with 3D face search capabilities, and next-generation face-matching technology

offering 1:1 face matching and 1:N face verification, age verification, and on-premises

solutions for various sectors.

As we gaze into the future, security, in the era of digital transformation, transcends luxury to

become a necessity. Significant investments by entities ranging from Apple to national

governments underscore the prominence of 3D face recognition in the convergence of

technology and security. The synergy of face recognition and 3D liveness detection offers

robust protection in a dynamic landscape. FACIA leads the way, providing tools to confidently

navigate this new territory and ensure uncompromising security.

In conclusion, the challenges posed by the digital age are myriad, but with tools like 3D face

recognition, we're not merely reacting to threats; we're preempting them. Standing on this

technological precipice prompts not a question of whether to adopt such technologies, but

rather how soon we can integrate them. FACIA's infusion of AI-driven solutions, including 3D

face recognition and liveness detection, offers innovative solutions that resonate across sectors,

reflecting a proactive stance in addressing the multifaceted challenges of the digital age. [22]

Figure 17: 3D face model

28

2.6.6 Multimodal (Fusion) Approaches

In recent years, machine learning algorithms, particularly neural networks, have gained

substantial prominence owing to their remarkable accuracy in training models. Neural

networks, inspired by the human brain, have become a focal point in both academic research

and industrial applications due to their superior performance within a single domain dataset.

However, contemporary research is increasingly delving into the realm of multimodal input

data, marking a shift from unimodal datasets. Multimodality, as defined by Lahal et al. [3],

involves systems observed by multiple sensors. The primary objective of leveraging

multimodality is to extract and amalgamate essential information from individual sensors,

creating a composite feature set to address a given problem. This approach aims to endow the

output with a richer representation and enhanced performance compared to individual

modalities. Multimodal data analysis finds practical applications across diverse fields such as

medicine, business, driverless technology, and gaming, where common remote sensing devices

like cameras, LIDAR, radar, and ultrasonic sensors are frequently fused [4].

In the realm of multimodal data fusion, three distinct techniques are commonly employed [5]

[6]. The first technique is early fusion or data-level fusion, a traditional method that involves

combining multiple datasets before analysis. Early fusion, also known as input-level fusion,

poses challenges related to data pre-processing, synchronization of data sources with varying

sampling rates, and assumptions of conditional independence between data sources. The

process entails either removing the correlation between sensors or fusing data at a lower-

dimensional common space, facilitated by statistical methods such as principal component

analysis (PCA) and canonical correlation analysis. Despite its historical significance, early

fusion has drawbacks, including a substantial reduction in data volume and the complexity of

synchronizing timestamps across modalities.

Conversely, the second technique, late fusion or decision-level fusion, operates by

independently using data sources and subsequently fusing them during the decision-making

stage. Inspired by ensemble classifiers, late fusion proves advantageous when dealing with

significantly varied data sources in terms of sampling rate, data dimensionality, and

measurement units. Late fusion often outperforms early fusion, particularly as errors from

multiple models are treated independently, mitigating correlated errors. However, debates

persist regarding whether late fusion consistently surpasses early fusion in performance.

29

Various rules, such as Bayes rules, max-fusion, and average-fusion, guide the optimal

combination of independently trained models.

The third technique, intermediate fusion, aligns with the architecture of deep neural networks.

This method stands out as the most flexible, allowing data fusion at different stages of model

training. Intermediate fusion involves transforming input data into a higher-level representation

through multiple layers, incorporating both linear and nonlinear functions. In the context of

deep learning multimodal fusion, intermediate fusion entails merging representations of

different modalities into a shared representation layer, facilitating the learning of a joint

representation. This fusion can occur simultaneously or gradually, utilizing different modalities

at different stages of the model. Unlike early and late fusion, intermediate fusion provides the

flexibility to fuse features at various depths, enhancing adaptability. Dimensionality reduction

techniques, such as principal component analysis (PCA) and autoencoders, are often employed

to optimize performance and prevent overfitting.

Research efforts, exemplified by Karpathy et al. [18], explore "slow-fusion" networks,

gradually fusing features across multiple layers for improved performance in video stream

classification problems. Similarly, progressive fusion methods, as proposed by other studies

[19], prioritize highly correlated input modalities before gradually incorporating less correlated

ones. These approaches showcase state-of-the-art performance, especially in complex tasks

like communicative gesture recognition. In essence, multimodal data fusion techniques play a

pivotal role in addressing the intricacies of diverse datasets, offering a spectrum of strategies

to enhance the robustness and adaptability of machine learning models across various

applications. [23]

30

Figure 18: Early fusion or data-level fusion

Figure 19: Late fusion or decision fusion

Figure 20: Intermediate fusion

31

2.7 Existing Project Methodology

This section studies the existing project methodology that has been proposed by the others for

facial recognition applications with brief explanation.

The first project starts from “Multi-face recognition for the detection of prisoners in jail using

a modified cascade classifier and CNN” proposed by IGSM Diyasa, A Fauzi, M Idhom, and A

Setiawan in 2021. They introduced a method that combines deep neural networks that are

Convolutional Neural Networks (CNN) and Haar Cascade Classifier as real-time applications

to solve the difficulty of classification problems. This method is implemented with the guide

of the OpenCV library for multi-face detection and 5MP CCTV camera devices. Furthermore,

this method has been proven to be very efficient in face classification since its facial recognition

system performance achieves an 87% accuracy rate. [24]

The second project continues to “Multi-face recognition process using Haar Cascade and

Eigenface methods.” This method was proposed by Teddy Mantoro*, Media A.Ayu, and

Suhendi in 2018. The proposed face recognition process was done using a hybrid process of

Haar Cascade and Eigenface methods which can detect multiple faces in a single detection

process. This facial recognition system can detect 55 individuals in a single detection process.

This improved face recognition approach was able to recognize multiple faces with a 91.67%

accuracy level. [25]

The third project title is “University Classroom Attendance System Using FaceNet and Support

Vector Machine” which was proposed by Thida Nyein and Aung Nway Oo in 2019. This

attendance system provides multi-face recognition with the combination of FaceNet and

Support Vector Machine (SVM). In this proposed system, FaceNet is used for feature

extraction by embedding 128 dimensions per face and SVM is used to classify the given

training data with the extracted feature of FaceNet. The experimental result shows that the

proposed approach with an accuracy of 98.66% within 55 students detection in a classroom.

[26]

32

2.8 Summary

This section summarizes and compares the advantage and disadvantage of various types of face

detection techniques and face recognition techniques in a table. Besides, this section also

provides the comparison of existing methodology in a table from different aspects.

Technique

type

Advantage Disadvantage

Viola-Jones

Algorithm

Fast, computationally efficient,

works well for detecting frontal

faces, suitable for real-time

applications

Sensitive to variations in lighting

conditions, limited accuracy,

requires training phase for

classifier creation

Histogram of

Oriented

Gradients

(HOG)

Effective, robust to variations in

lighting and orientation, can used in

combination between SVM for

improved accuracy

Requires additional techniques for

precise facial feature localization,

may produce false positives in

complex scenes, computationally

intensive in high resolution

images

Deep

learning

(CNN)

Achieves state-of-the-art accuracy,

can handle various poses,

expressions, occlusions, support

end-to-end training for feature

extraction and classification

Requires large datasets for

training, demanding resource-

limited devices, prone to

overfitting with limited data

Cascade

classifier (eg:

OpenCV

Haar

Cascades)

Efficient, suitable for real-time

applications, can be trained for

specific objects, well-suited for

resource-constrained devices

Less accurate compared to deep

learning model, may produce false

positives in cluttered scene,

limited adaptability to complex

scenarios

Scale-

Invariant

Feature

Transform

(SIFT)

Robust to scale, rotation, affine

transformations, effective for

detecting faces under various

conditions, can be combined with

other techniques for improved

accuracy

Slower and less suitable for real-

time applications, sensitive to

changes in viewpoint and

occlusions, may require additional

post-processing for face

localization

Local Binary

Patterns

(LBP)

Efficient, lightweight, robust to the

changes in lighting conditions,

suitable for resource-constrained

devices

Limited accuracy in complex

scenes and under extreme

variations, may struggle with

occluded and non-frontal face,

limited feature representation for

detailed face analysis

Table 3: Comparison table between various face detection techniques

33

Technique type Advantage Disadvantage

Eigenfaces Simple, efficient, effective for

small to medium-sized

databases, low memory

requirements

Limited to variations in lighting and

pose, less accurate with significant

variations in face expressions,

requires feature extraction and

dimensionality reduction

Fisherfaces

(Linear

Discriminant

Analysis)

Discriminative feature

extraction, suitable for face

recognition, handles within-

class variability effectively,

can be combined with other

techniques for improved

accuracy

Sensitive to variations in

illumination and pose, requires

relatively large dataset for training,

limited robustness to extreme

variations

Local Binary

Patterns (LBP)

Efficient, lightweight, robust

to the changes in lighting

conditions, suitable for

resource-constrained devices

Limited accuracy in complex scenes

and under extreme variations, may

struggle with occluded and non-

frontal face, limited feature

representation for detailed face

analysis

Deep learning

(CNN)

Achieves state-of-the-art

accuracy, can handle various

poses, expressions, occlusions,

support end-to-end training for

feature extraction and

classification

Requires large datasets for training,

demanding resource-limited

devices, prone to overfitting with

limited data

Local Feature-

Based Methods

(SIFT, SURF)

Robust to scale, rotation, affine

transformations, effective for

detecting faces under various

conditions, can be combined

with other techniques for

improved accuracy

Slower and less suitable for real-

time applications, sensitive to

changes in viewpoint and

occlusions, may require additional

post-processing for face localization

Facial

Landmark-

Based Methods

Effective for precise face

alignment and feature

localization, enables accurate

pose estimation and facial

expression analysis, useful in

combination with other

techniques for enhanced

accuracy

May not be suitable for full-scale

face recognition on its own, relies

on accurate landmark detection,

intensive for real-time applications

34

3D face

recognition

Provides depth information,

effective in distinguishing

identical twins and similar-

looking individuals, less

susceptible to variations in

lighting and 2D photo spoofing

Requires specialized hardware,

limited availability of 3D facial

data, increased complexity

Multimodal

(Fusion)

Approaches

Combines multiple techniques

for improved accuracy,

provides redundancy and

robustness, useful for

applications with stringent

security requirements

Increased complexity, more

complex to maintain and

implement, requires synchronized

data from different modules,

increased computational and storage

requirements

Table 4: Comparison table between various face recognition techniques

Author name Feature, Method & Applications Accuracy

I G S M Diyasa, A

Fauzi, M Idhom

and A Setiawan

(2021)

❖ Modified Cascade Classifier and CNN

❖ Application: Multi-face recognition for the

detection of prisoners in jail

87.1%

Teddy Mantoro*

Media A. Ayu

Suhendi

(2018)

❖ Multi-face recognition process using Haar

Cascades and Eigenface methods

❖ Application: Multi-face recognition

91.67%

Thida Nyein

Aung Nway Oo

❖ FaceNet and Support Vector Machine (SVM)

❖ Application: University classroom attendance

system

98.66

Table 5: Comparison table between existing methodologies

35

3- Methodology

3.1 Overall System Design

Figure 21: Overall system block diagram

The figure above illustrates the overall design of the facial recognition system. The input of the

system is the image of students captured by a smartphone in real-time. The process is separated

into many key components: web interface, Flask server, image storage, image processor, face

recognition engine, database, and data logger. The output of the system is an updated

attendance tracking record of the students in an Excel file. A detailed explanation of the overall

system working is provided below.

The web interface serves as the primary access point for users, such as instructors to interact

with the system. Users can capture images of students who are present in the classroom in real

time using a smartphone through this interface. The interface facilitates the connection to the

Flask server, allowing for the upload of captured images and the retrieval of updated attendance

records. It ensures that users can easily manage and monitor attendance without needing direct

access to the backend process.

Next, the Flask server acts as the central hub for the system, managing routes and handling

HTTP requests. The Flask server receives this image and routes it to the appropriate

components when an image is captured and uploaded via the web interface. It first directs the

image to image storage for temporary holding. Additionally, the Flask server manages data

flow between various components, ensuring seamless operation and integration of the system.

36

After that, image storage is the place that temporarily holds the images that are captured and

uploaded through the Flask server. It provides a structured location for storing these images

before they are processed. Moreover, image storage also ensures that images are readily

available for the next stage of processing by acting as a buffer. Thus, this will maintain the

efficiency and organization of the data flow within the system.

Afterward, the image processor will retrieve stored images from the image storage and perform

necessary pre-processing tasks. The image processor detects and localizes multiple faces within

each image using libraries including OpenCV and dlib. This pre-processing step includes

resizing and normalizing the images to prepare them for accurate face recognition. The image

processor is crucial for ensuring that the images are in the correct format and quality for

subsequent recognition tasks.

Hereafter, the face recognition engine is responsible for identifying the faces detected by the

image processor. Leveraging advanced neural networks like CNN (Convolutional Neural

Networks) and ResNet (Redisual Networks), the engine compares the detected faces with a

database of known face descriptors. This stage involves feature extraction and matching, where

the unique features of each face are identified and compared to existing records are determine

the identity of each student.

Apart from that, the database component stores the face descriptors and other necessary data

for face recognition. The face recognition engine retrieves the corresponding face descriptor

from the database for comparison when it identifies a face from the images. Additionally, new

face descriptors can be added to the database as needed. In other words, the database is crucial

for maintaining an up-to-date repository of face descriptors that the system can reference during

the recognition process.

From there on, the data logger logs the results of the recognition process, including recognized

faces and timestamps. It provides a record of the recognition events, which can be used for

auditing and tracking purposes.

37

Lastly, the final stage of the system is updating the attendance records. Based on the recognition

results logged by the data logger, the facial recognition system will then update the attendance

records in an Excel file after completing the recognition process. This file serves as the official

record of student attendance, which instructors can access and manage through the web

interface. The real-time update of attendance records ensures that the system provides accurate

and current data to educational institutions.

3.2 Hardware Design

Figure 22: System hardware design

The figure above shows the conceptual hardware design of the project. The hardware used in

this project is a smartphone, a laptop, and a Wi-Fi router. The purpose of using the router is to

provide a Wi-Fi network and enable wireless communication between smartphone and laptop

at the same time. The camera on the smartphone serves as an input source since it is used to

capture images of the students. After the image is taken, the photo is sent to the laptop over the

Wi-Fi network, triggering the program. The laptop is used to run the backend program which

is our facial recognition system implemented in Python using OpenCV. Moreover, the laptop

also acts as the main development tool in the project since it is used to write the code and debug

the program. The primary functions of the laptop in this project are receiving images,

processing images, rendering confirmation, executing the facial recognition program, storing

and logging recognition results, and saving it into an Excel spreadsheet.

38

3.3 Software Design

In this project, the software design is divided into three main scripts, each responsible for

different aspects of the facial recognition system. These scripts include “Flask.py” for handling

web server functionalities, “feature_extraction.py” for extracting facial features from images,

and “face_recognize.py” for processing images and performing face recognition. This section

provides a detailed explanation of the responsibilities, key functions, and interactions of these

scripts. Furthermore, the face detection algorithm, face recognition algorithm, and data

interfacing also will be discussed in this section.

3.3.1 Flask Web Server (“Flask.py”)

Figure 23: Web Framework for Python

The “Flask.py” script uses the Flask framework to create a simple web server that provides file

uploads, processes the uploaded images, and provides feedback to the user through a response

page. This script comprises three main functionalities: file upload interface, file processing,

and response page. Firstly, the file upload interface provides a user-friendly web page where

users can upload images for processing. Users can select and upload multiple files at once,

making the process efficient and straightforward. The Flask application initializes the

necessary configurations to handle these file uploads.

39

3.3.2 Feature Extraction (“feature extraction.py”)

Figure 24: Dlib + OpenCV

The “feature_extraction.py” script focused on extracting and storing facial features data. The

primary purpose of this script is to handle the extraction of facial features from detected faces

using pre-trained models from the “dlib” library. The process involves identifying key

landmarks on the face and computing a high-dimensional feature vector (or descriptor) that

uniquely represents the facial characteristics of each individual. These feature vectors are then

stored in a structured format which is a CSV file, for easy access and manipulation. By

organizing the extracted data in a CSV file, the system ensures that it can efficiently retrieve

and compare facial features during the recognition process, facilitating accurate and reliable

identification of individuals.

3.3.3 Image Processing and Face Recognition (“face recognize.py”)

Figure 25: Face Recognition

The face_recognize.py script utilizes several key technologies and libraries to perform face

detection and recognition. It employs OpenCV for general image processing tasks and dlib for

specialized functions such as CNN-based face detection and recognition. The script uses three

primary models: the mmod_human_face_detector, a pre-trained dlib CNN model for detecting

faces; the shape_predictor_68_face_landmarks model for identifying key points on each

40

detected face; and the dlib_face_recognition_resnet_model_v1 model for extracting facial

features and generating unique descriptors for each face. These models work together to detect

faces, identify landmarks, and create descriptors that are used for comparison and recognition.

Despite its effectiveness, the system has a notable limitation: it is unable to detect masked

persons because the models selected rely heavily on facial landmarks that are typically

obscured by masks. When masks cover significant portions of the face, such as the nose and

mouth, the model's ability to identify and verify individuals is significantly reduced.

The script's functionality includes loading a face database from a CSV file containing known

face descriptors and associated metadata (names and IDs), and performing detection and

recognition by resizing images, detecting faces, checking confidence levels, extracting features

using facial landmarks, and matching these against known descriptors for identification.

Additionally, the script prompts the user to key in additional information such as the course

code, subject name, instructor name, and any remarks. This information is then associated with

the recognized faces and stored alongside the recognition results.

3.3.4 Image Pre-Processing

Before an image is fed into the face detection algorithm, it must undergo a series of image

processing steps designated to enhance the effectiveness of detection by standardizing the

image. The pre-processing steps used include:

Steps Description

Image Loading ➢ The image is read from the file system using OpenCV’s

“cv2.imread()”

➢ This step converts the image file into a format that can be

manipulated by the OpenCV library

➢ It is the initial step that brings the image data into the

processing pipeline

Initial Image

Resizing

➢ The loaded image is resized into a smaller dimension using a

custom “resize_image” function

41

➢ This function scales the image by a specified percentage

(50% in this case)

➢ Resizing images helps to standardize the input dimensions,

and reduce computational load, making subsequent

operations faster and more efficient

Further Resizing for

Face Detection

➢ The resized image is further scaled by a factor of 2

➢ This additional resizing is applied using OpenCV’s

“cv2.resize()” function

➢ This step improves the accuracy of face detection

➢ Scaling the image up helps in detecting smaller faces that

might not be detected at lower resolutions

Table 6: Image pre-processing steps and description

The following images show the sequence and output of each step based on a given sample face

image and the proof that has shown the dimension image has been increased with a similar

appearance.

42

Figure 26: Image after pre-processing

3.3.5 Face Detection Algorithm

The face detection technique used in this project is based on a Convolutional Neural Network

(CNN) model provided by the dlib library, utilizing the pre-trained model

“mmod_human_face_detector.dat”. This CNN model is designed to detect human faces with

high accuracy and robustness. The process begins by loading the CNN face detection model,

using dlib’s “cnn_face_detection_model_v1” class. This model, specifically trained for

detecting human faces, is recognized for its effectiveness in various conditions.

Figure 27: Example of CNN-based face detection using dlib

43

Before the image is processed by the detection algorithm, it undergoes a series of pre-

processing steps to enhance detection accuracy. The initial step involves resizing the input

image to standardize the dimensions and reduce computational load. The resized image, which

is scaled by a factor of 2, is then passed to the CNN face detector. The detector returns a list of

detected faces along with their confidence scores, where each face is represented by a rectangle

indicating its coordinates within the image.

Detected faces are filtered based on their confidence scores, ensuring only faces with a

confidence score above a certain threshold (0.5 in this case) are considered for further

processing. This step is crucial in reducing the number of false positives. For each face that

passes this confidence check, the script predicts 68 facial landmarks using another pre-trained

dlib model, “shape_predictor_68_face_landmarks.dat”. These landmarks are key points on the

face that are used for further processing.

Figure 28: Example of detected facial landmarks on faces

The identified facial landmarks are then used to compute a 128-dimensional descriptor for each

detected face using the dlib face recognition model,“dlib_face_recognition_resnet_model_v1”.

This descriptor is a compact representation of the face's features and is essential for the

subsequent face recognition process. The entire face detection process, from resizing the input

image to computing the facial descriptors, ensures high accuracy and robustness in detecting

and recognizing faces under various conditions.

44

Figure 29: Example of visual representation of 128-dimensional descriptors computed for faces

3.3.6 Face Recognition Algorithm

Face recognition using dlib's CNN architecture involves a series of steps, starting with the

utilization of a pre-trained CNN model provided by the dlib library. This CNN model is

specifically designed for face detection and recognition tasks, renowned for its accuracy and

robustness. In the context of face recognition, the primary objective is to leverage the learned

features of this model to create meaningful embeddings for individual faces.

Figure 30: Simple architecture of CNN

The first step entails acquiring a pre-trained CNN model, mmod_human_face_detector.dat,

typically available through the dlib library. This model is pre-trained on extensive face datasets,

enabling it to capture high-level features from various facial characteristics. Once the CNN

model is obtained, the face dataset undergoes meticulous pre-processing. This involves resizing

each face image and ensuring the dataset is prepared for detection and recognition tasks. The

subsequent phase involves feature extraction, where the pre-trained CNN model is employed

45

to extract relevant features from the face images. The top layers of the CNN model usually

consist of fully connected layers that are used for classification purposes.

An embedding layer is introduced to the CNN model to further refine the feature extraction

process. This additional layer aids in reducing the dimensionality of the extracted features and

fosters the creation of a meaningful representation of faces within a feature space. Afterward,

the training phase follows during which the CNN model is trained on the prepared face dataset.

A crucial aspect of this training is the selection of an appropriate loss function, with the triplet

loss being a common choice for face recognition tasks. The triplet loss enforces that the

distance between embeddings of faces belonging to the same person (positive pair) is

minimized while the distance between embeddings of faces from different individuals

(negative pairs) is maximized.

ResNet (Residual Network) is a type of deep neural network that addresses the problem of

vanishing gradients in deep networks by introducing residual connections. These connections

allow the model to learn residual functions regarding the input layer, enabling the training of

very deep networks. ResNet architectures consist of multiple residual blocks, each containing

convolutional layers, batch normalization, and ReLU activations. The key innovation is the

shortcut connection that bypasses one or more layers, adding the input directly to the output of

the stacked layers. This design helps in maintaining gradient flow, thus enabling the

construction of extremely deep networks without performance degradation.

Figure 31: Visualization of ResNets

46

The dlib face recognition model, dlib_face_recognition_resnet_model_v1, uses a variant of the

ResNet architecture to compute 128-dimensional descriptors for faces. These descriptors are

compact feature representations that capture the unique characteristics of each face, making

them suitable for recognition tasks.

Figure 32: Example of 128 embeddings value for an image

Fine-tuning can optionally be performed on the model to adapt it to the specific characteristics

of the target faces in the dataset. This fine-tuning process refines the model’s parameters to

enhance its performance on the given face recognition task. After that, a new face image is

passed through the trained CNN-based model during face recognition inference to obtain its

embedding in the learned feature space. The following step involves comparing the embedding

of the input face with the embeddings of known faces in the dataset. Lastly, a threshold is set

for similarity scores to make a final determination of whether the input face matches any known

face in the dataset. If the similarity score surpasses the established threshold, the input face is

recognized as belonging to a known individual.

47

3.3.7 Data Interfacing

Integrating data between the processing unit and the mobile device in the context of face

recognition involves the mobile device's camera serving as the input mechanism, capturing

facial images for subsequent processing on a laptop. The image captured by the smartphone is

sent to the laptop, where it triggers the backend program to initiate the facial recognition

process. The laptop, running a local server created using the Flask framework, handles the

image processing tasks using Python and OpenCV libraries. This process includes detecting

faces, extracting features, and recognizing individuals using pre-trained models from the dlib

library. Once the image processing is completed, the recognition results are logged and saved.

A local area network (LAN) uses Wi-Fi technology to enable seamless wireless communication

between the mobile device and the laptop. This setup allows both the smartphone and laptop

to connect to the same Wi-Fi network, facilitating the transfer of data between them. The local

server hosted on the laptop manages HTTP requests and routes the necessary data to and from

the mobile device. This ensures that the facial recognition results can be effectively processed

and stored on the laptop, enhancing the accuracy and efficiency of the system.

In summary, the system employs a smartphone for capturing images and a laptop for processing

them, with a Flask server facilitating the communication between the devices over a Wi-Fi

network. This configuration ensures efficient and accurate face recognition, with results that

can be easily accessed and managed on the laptop.

48

4- Implementation and Testing

4.1 UML Diagram

Figure 33: UML Diagram

The figure above shows the UML diagram of this project. The laptop serves as the processing

unit of this system and is used for the implementation of image processing algorithms, acting

as the interface between mobile devices and data storage. The mobile device's camera captures

photos of individuals' faces and transmits them to the laptop through a local area network

(LAN). Before capturing an image, the setup is adjusted to ensure optimal lighting and

positioning for better recognition results.

The mobile device captures images and sends them to the Flask server over the LAN for further

processing. This transmission is facilitated by a web interface that connects the mobile device

to the Flask server. The Flask server receives the images and manages the uploaded images.

The uploaded images are temporarily stored on the Flask server before being sent to the laptop

for detailed analysis.

Upon receiving the processed images from the Flask server, the laptop runs specialized

algorithms to detect faces within the images. This involves using pre-trained models to identify

and locate faces accurately. The detected faces are then recognized by matching them with

known faces stored in the database, a process that includes extracting features from the detected

faces and comparing them against the database entries. The recognition results, including

identified faces and their corresponding data, are logged and stored in the database for future

reference, ensuring that attendance and identification records are maintained accurately.

In summary, the laptop serves as the central processing unit, implementing the image

processing algorithms and acting as the interface between the mobile device and data storage.

49

The mobile device captures photos of faces and transmits them to the laptop through the Flask

server using a LAN. The Flask server receives and processes the images, which are then

analyzed on the laptop to detect and recognize faces. The results are logged in a database for

future reference, providing a comprehensive understanding of the system's workflow as

depicted in the UML diagram.

4.2 Flowchart

Figure 34: Flowchart of the overall system

50

The figure above illustrates the main function of the face recognition system. The workflow

begins with the initialization of the system, preparing it to capture and process images. The

first step involves the mobile device capturing an image of the students who are present. This

image serves as the raw input for the system. Once captured, the image is uploaded to the Flask

server, facilitating further processing on a more powerful machine (the laptop).

Upon receiving the image, the Flask server stores it in the image storage directory, ensuring its

availability for subsequent operations. The stored image is then loaded into the server’s

memory for processing. In the pre-processing stage, the image undergoes several

transformations: it is resized to a standard dimension for the face detection process.

Before starting face detection, the system prompts the user to enter additional information such

as the course code, subject name, instructor name, and any remarks. This information is crucial

for associating the recognized faces with the relevant metadata.

Next, the pre-processed image is passed through the feature extraction process using dlib. This

involves identifying facial landmarks and computing face descriptors, which are unique

representations of each face. The system detects faces within the image, identifying their

locations using OpenCV and dlib. The face recognition engine then attempts to recognize the

detected faces by comparing the extracted descriptors against a database of known faces,

utilizing models like CNN and ResNet for matching.

At the decision point, the system checks if the detected face matches any face in the database.

If a match is found, the face descriptors of the recognized faces are stored in the database, and

the recognition results, including names and IDs, are logged. If no match is found, the faces

are verified as unknown and it will not proceed to the storing process. Finally, the facial

recognition module updates the new attendance data, showing which students have been

recognized and logged into the file directory. The process completes with all recognized faces

logged and the user interface updated, enhancing the accuracy and efficiency of attendance

tracking in educational settings.

51

4.3 Hardware Implementation

In the implementation of this project, a Redmi Note 9 Pro serves as the primary device for

capturing images of students upon their entry into the classroom. The smartphone operates on

the Android 10 platform with MIUI 12, featuring a robust processing capability with its

2.32GHz octa-core configuration. The device boasts substantial storage capacity, offering

128GB of internal storage complemented by 6GB of RAM, providing ample space for efficient

image storage and processing. Notably, the Redmi Note 9 Pro is equipped with an advanced

camera system, featuring a 64 MP wide lens, an 8 MP ultrawide lens, a 5 MP macro lens, and

a 2 MP depth sensor. This camera setup ensures high-quality image capture, enabling precise

facial recognition. [30]

On the processing end, an Asus TUF F15 2022 model takes charge of executing the facial

recognition program. Powered by the 12th Gen Intel® Core™ i5-12500H Processor clocked at

2.5 GHz, this laptop exhibits formidable computational capabilities. With a total of 12 cores,

comprising 4 powerful P-cores and 8 efficient E-cores, the processor ensures swift and efficient

handling of the facial recognition algorithms. The system is further enhanced by 8GB DDR4-

3200 SO-DIMM memory, supporting dual-channel memory for optimal multitasking

performance. Storage needs are met by a 512GB PCIe® 3.0 NVMe™ M.2 SSD, offering high-

speed data access for seamless program execution.

Noteworthy is the inclusion of the NVIDIA® GeForce RTX™ 3050 Laptop GPU in the Asus

TUF F15, operating at 1790MHz* with a 95W power profile (including a 50MHz OC and 15W

Dynamic Boost). This dedicated GPU, with its 4GB GDDR6 memory, significantly contributes

to the efficiency of the facial recognition program, ensuring accelerated image processing and

accurate identification. The combination of a powerful smartphone and a high-performance

laptop underscores the project's commitment to leveraging cutting-edge technology for

effective and reliable facial recognition in the classroom environment.[31]

 Figure 35: Redmi Note 9 Pro Figure 36: ASUS TUF Gaming F15 2022

52

4.4 Software Implementation

Figure 37: Python logo

Python, a high-level programming language, served as the foundation for developing the face

recognition system. Leveraging its high-level characteristics, Python provides a user-friendly

environment with enhanced code readability and less stringent code formatting compared to

languages like C or C++. This quality contributes to reduced costs associated with program

maintenance. Furthermore, Python's extensive standard library facilitates code modularity and

reusability, fostering versatility in applications, including interfaces for operating systems and

machine learning within the realm of face recognition.

Figure 38: OpenCV logo

OpenCV, aptly named for "Open Source Computer Vision," stands as a versatile open-source

library extensively utilized in the realm of face recognition, visual image processing, and

machine learning systems. This library boasts compatibility with four programming languages,

namely C++, Python, Java, and MATLAB, across various platforms. Equipped with over 2500

optimized algorithms, OpenCV plays a pivotal role in enabling advanced face recognition

53

algorithms. The implementation of image processing techniques, readily available in OpenCV,

encompasses a spectrum of functionalities, including gray scaling, thresholding, and image

feature extraction, crucial for tasks such as contour determination for precise face localization.

An exhaustive online documentation resource provides comprehensive insights into the syntax

and functions of these face recognition algorithms, serving as a valuable reference and guide

for developers and researchers alike.

Figure 39: Flask logo

Flask is a lightweight web framework for Python, designed to simplify the development of web

applications. It provides developers with the tools to create robust and scalable web

applications quickly and efficiently. Flask follows a minimalistic approach, allowing

developers to use only the components they need while maintaining the flexibility to extend

and customize the application as required. In the context of the face recognition system, Flask

serves as the backbone for managing image uploads, processing images, and providing a user-

friendly interface. It acts as the intermediary between the client devices (such as mobile

devices) and the processing unit (laptop), facilitating seamless communication and data

transfer.

54

Figure 40: Dlib logo

Dlib is a toolkit containing machine learning algorithms and tools for creating complex

software, and it is particularly well-suited for tasks related to face detection and face

recognition. The library includes several pre-trained models that are specifically designed to

enhance accuracy and robustness in these applications. One such model is the

cnn_face_detection_model_v1, a pre-trained CNN model that enables the system to efficiently

identify faces in images. Another essential model provided by dlib is the

shape_predictor_68_face_landmarks, which predicts 68 facial landmarks, crucial for precise

face localization and alignment. Additionally, the face_recognition_model_v1 computes face

descriptors, which are essential for recognizing and distinguishing between different faces. The

functionality offered by dlib, combined with its ease of integration into Python applications,

makes it an invaluable tool for implementing advanced face recognition systems.

Figure 41: Numpy logo

NumPy is a fundamental package for scientific computing with Python, widely used for array

and matrix operations essential in image processing and machine learning tasks. In the face

recognition system, NumPy is utilized to handle and manipulate large datasets of image data

and facial descriptors efficiently. It provides support for multi-dimensional arrays and matrices,

along with a collection of mathematical functions to operate on these arrays, making it a

cornerstone library for numerical computations in Python.

55

Figure 42: Pandas logo

Pandas is a data manipulation and analysis library used to handle and process data in CSV files.

In the context of the face recognition system, Pandas is employed to load and manage known

face descriptors and associated metadata, such as names and IDs. This library simplifies the

process of reading, writing, and manipulating structured data, enabling efficient data handling

and preprocessing tasks required for accurate face recognition.

Figure 43: Scipy logo

scipy is a library used for scientific and technical computing. In this script, it is used specifically

for computing the cosine distance between face descriptors, a crucial step in the face

recognition process. The library offers a range of functions for mathematical algorithms and

statistical operations, making it a vital tool for implementing advanced scientific computations

in Python.

56

Figure 44: Tkinter logo

Tkinter is a standard GUI (Graphical User Interface) toolkit in Python. It is used here to create

a simple file dialog for selecting image files. Tkinter provides a fast and easy way to create

GUI applications, allowing users to interact with the face recognition system through a

graphical interface. This integration enhances the usability of the system by providing a user-

friendly method for selecting and processing images.

Figure 45: Python Time module

The time module provides various time-related functions, used in this script to measure the

processing time of the operations. By recording the start and end times of the face recognition

process, it allows for the calculation of the total time taken to complete the task, which is useful

for performance evaluation and optimization.

57

Figure 46: Python OS module

The os module provides a way of using operating system-dependent functionality, such as

handling file paths and saving uploaded images. In the face recognition system, the os module

is used to manage file operations, ensuring that images are correctly saved and accessed during

the processing workflow. This module’s functionality is crucial for maintaining an organized

file structure and handling file-related tasks efficiently.

Figure 47: JetBrains Pycharm logo

PyCharm plays a pivotal role in the development of face recognition systems by providing a

robust and versatile integrated development environment (IDE). As a feature-rich code editor,

PyCharm streamlines the writing and editing of code for face recognition algorithms, offering

functionalities such as syntax highlighting, auto-completion, and linting to enhance code

correctness and efficiency. Its integrated version control, particularly through Git support,

facilitates collaborative development in large-scale face recognition projects. With a vast array

of extensions, developers can augment the IDE's functionality to include features related to

Python development, machine learning frameworks, and Git integration, aligning the

environment with the specific needs of face recognition projects. The IDE's powerful

debugging tools, task automation capabilities, and an integrated terminal contribute to efficient

troubleshooting and automation of repetitive tasks, critical for ensuring the accuracy and

58

reliability of face recognition algorithms. Additionally, PyCharm provides a seamless

interactive development environment for Python, making it well-suited for face recognition

systems implemented in this language. Its cross-platform compatibility ensures that developers

can work seamlessly across different operating systems, fostering flexibility in the

development process. In summary, PyCharm serves as a comprehensive and adaptable tool that

significantly contributes to the development, testing, and maintenance of the software aspects

of face recognition applications.

4.5 Testing

In this section, we examine the performance of the Convolutional Neural Network (CNN)

model for face detection and recognition across various distances between the camera and the

subject. Evaluating the model's effectiveness at different distances is crucial for applications

that involve varying proximity. By testing the model under these conditions, we aim to

understand its robustness and reliability in real-world scenarios.

Additionally, we assess the model's accuracy and processing time duration when detecting and

recognizing faces with different numbers of people. This evaluation helps determine the

scalability of the model and its efficiency in handling images with varying complexity and

crowd density. To ensure consistency and control over the testing variables, all tests are

conducted under the same conditions except for 2-meter tests. The images are captured at the

same height, from the same angle, in the same room, and using the same group of students as

subjects for 3-meter tests to 5-meter tests. This controlled setup helps to isolate the impact of

distance and the number of people on the model's performance, providing more accurate and

reliable results. The parameters set to test the accuracy and processing time duration of the face

recognition system are the different distances from the camera and the different numbers of

students in the images.

59

Figure 48: Classroom used for testing

4.5.1 Face Detection and Recognition with Different Distances

Each face detection and recognition effectiveness are dependent on the distance from which

the image was taken. To test the effective distance for face detection and recognition, images

of faces are taken starting from 2 meters up to 5 meters. Four samples are taken at each distance

to ensure the accuracy and reliability of the data, with each row in the setup representing a 1-

meter increment. The tests are conducted under controlled conditions, maintaining the same

height, same angle, same room, and the same group of students for each distance. It is worth

noting that the performance at 2 meters is particularly good, which suggests that slight

variations at this distance do not significantly affect the overall results. Sample images taken

at distances of 2 meters to 5 meters are shown in the table below:

60

Distance (m) Sample image

2

3

61

4

5

Table 7: Sample images for distance test

Next, the figure below demonstrates the classroom setup for testing face detection and

recognition at various distances. Each row represents a distance from the camera, starting from

1 meter to 5 meters. The labels indicate the distance from the camera to the row where the

subjects will be seated while the other figure shows the measurement of the distance to the fifth

row, which is considered as 5 meters, confirming it is approximately 4.90 meters. This ensures

accurate distance labeling for the testing setup.

62

Figure 49: Classroom distance setup

Figure 50: Example of distance measurement

63

4.5.2 Face Detection and Recognition with Different Numbers of Students

The accuracy and processing time of the face detection and recognition system depend on the

number of people present in the image. To investigate this, images containing different

numbers of students, ranging from 4 to 10 individuals, were captured. Four images were taken

for each group size to ensure data accuracy and reliability. All tests were performed under

controlled conditions, maintaining consistent height, angle, room, and using the same group of

students. Below are examples of images with varying numbers of students:

Number of students

captured

Sample image

4

6

64

8

10

Table 8: Sample images for number of students test

65

4.5.3 Face Detection and Recognition Results

The following images show the results of face detection and recognition at different distances:

Figure 51: Sample output image for 2m

Figure 52: Sample output image for 3m

66

Figure 53: Sample output image for 4m

Figure 54: Sample output image for 5m

67

Next, the following images show the results of face detection and recognition with different

numbers of students:

Figure 55: Sample output image for 4 students

Figure 56: Sample output image for 6 students

68

Figure 57: Sample output image for 8 students

Figure 58: Sample output image for 10 students

69

Before the face detection and recognition process, the system prompts the user to enter

additional information such as the subject name, instructor name, course code, and any

remarks. This information is then associated with the recognized faces and saved in the output

files.

Figure 59: Sample user prompt output image for 10 students

Apart from that, the figure above shows the console output where the user is prompted to enter

the subject name, instructor name, course code, and remarks. After processing, the system

saves the output image and an Excel file containing the recognition results and additional

details. The processed image with recognized faces is saved to a specified directory while ten

recognized names, IDs, and additional information are saved to an Excel file for record-

keeping.

Figure 60: Output image and generated Excel file from the sample of 10 students

70

4.6 User Interface

4.6.1 Mobile Device Interface

Figure 61: Wi-Fi connection in laptop and mobile device

Before connecting the mobile device with the laptop, both devices must connect to the same

Wi-Fi as shown in the figure above. The Flask server needs to be running to handle incoming

requests from the mobile device.

Figure 62: Starting the Flask server

71

The Flask server can be started from the “Flask.py” script and it will show output as shown in

the figure above. Ensure that the server is running and listening for requests.

Figure 63: QR code for IP address

The IP address of the laptop is generated in a QR code format. The mobile device can scan the

QR code to access the webpage directly, as shown in the figure above.

Figure 64: Homepage design (mobile view)

72

Figure 65: Application page with single or multiple selection (mobile view)

After entering the webpage, the layout is shown in the figure above. The user is required to

select the “choose file” button to choose the image(s) they want to process and press the

“upload” button to send the image(s) to the laptop. The user can upload both single and multiple

files for processing. After receiving the image(s) from the mobile device, the laptop will

execute the face recognition program and save the output recognition result to a specified

directory.

73

Figure 66: Output displayed on webpage (mobile view)

Once the upload is complete, the webpage will display a message saying "Thank you for your

submission" as shown in the figure above.

74

4.6.2 Laptop Interface

Figure 67: Output of Flask server

The figure above shows the output of the Flask server running on the laptop. The IP address

displayed (circled up in yellow) can be clicked or entered in the web browser on the laptop to

access the same webpage hosted by the Flask server which is shown below. This allows both

the laptop and mobile device to access the web application for face detection and recognition,

ensuring seamless interaction and processing.

Figure 68: Homepage design (laptop view)

75

Figure 69: Application page with single or multiple selection (laptop view)

The webpage and function of the webpage are the same as the mobile view which is shown in

the figure above.

76

Figure 70: Proof that all images selected have been saved in the folder of laptop

All the images sent to the laptop have been saved in a folder so that they can be accessed on

the laptop anytime which is proved by the figure above.

77

5- Results and Discussion

5.1 Results and Analysis

5.1.1 Distance Test

The summary of the system performance at a distance range of 2m to 5m is shown in the table

below:

Distance (m) Accuracy (%)

2 100.00

3 94.64

4 90.48

5 88.65

Average accuracy = 93.44%

Table 9: Accuracy table with sample test images according to distances

The accuracy according to distance and the average accuracy are calculated as follows:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑤ℎ𝑒𝑟𝑒
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 = 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝑓𝑎𝑐𝑒𝑠 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑟𝑒𝑐𝑜𝑔𝑛𝑖𝑧𝑒),
𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛
= 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 (𝑡𝑜𝑡𝑎𝑙 𝑓𝑎𝑐𝑒𝑠 𝑟𝑒𝑐𝑜𝑔𝑛𝑖𝑧𝑒𝑑)

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑜𝑡𝑎𝑙 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠 𝑇𝑒𝑠𝑡𝑒𝑑

The system demonstrates effective face recognition capabilities within a range of 2 to 4 meters,

achieving a success rate of at least 90%. This observation highlights a decline in accuracy as

the distance increases, as illustrated in the table for objective 1, which presents the relationship

between distances and accuracy. Several technical factors contribute to this decline.

 As the distance between the camera and the faces increases, the number of pixels representing

each face decreases. This reduction in pixel density leads to a significant loss of detail, making

it more challenging for face recognition algorithms to accurately identify distinguishing

features such as the contours of facial landmarks, skin texture, and subtle expressions.

Additionally, the decline in resolution at greater distances affects the clarity of captured images.

Lower resolution means that the finer details are not as discernible, which can reduce the

78

effectiveness of the facial feature extraction process. As a result, the computed descriptors used

for recognition are less precise, increasing the likelihood of errors.

5.1.2 Number of Students Test

The following table summarizes the detection and recognition capabilities under different

groups of students that are captured in a single frame for objective 2. The number of students

is grouped by 4 settings starting from 4 students, 6 students, 8 students, and 10 students.

Number of students Processing time(s) Accuracy (%)

4 101.93 97.92

6 104.65 95.74

8 105.37 93.18

10 106.94 90.33

Table 10: Performance metrics of facial recognition system by number of students

The processing time and accuracy according to number of students are calculated as follows:

𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 =
𝑇𝑜𝑡𝑎𝑙 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑇𝑖𝑚𝑒 𝑝𝑒𝑟 𝐼𝑚𝑎𝑔𝑒 𝑜𝑓 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠

𝑇𝑜𝑡𝑎𝑙 𝐼𝑚𝑎𝑔𝑒 𝑜𝑓 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑜𝑡𝑎𝑙 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝑝𝑒𝑟 𝐼𝑚𝑎𝑔𝑒 𝑜𝑓 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠

𝑇𝑜𝑡𝑎𝑙 𝐼𝑚𝑎𝑔𝑒 𝑜𝑓 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠

From the table, it is observed that as the number of individuals in the frame increases from 4

to 10, the processing time increases from 101.93 seconds to 106.94 seconds, and the accuracy

decreases from 97.92% to 90.33%. This decline in accuracy can be attributed to resolution

decline, where more faces in the frame mean each face occupies fewer pixels, leading to a loss

of detail and making it harder for the algorithm to accurately identify distinguishing features.

Additionally, the complexity of accurately matching each face to the correct identity in the

database increases, leading to a higher chance of errors. More individuals in the frame can also

introduce variability and background noise, complicating the recognition process.

These performance metrics indicate that while the system performs well with a smaller number

of individuals, its efficiency and accuracy decrease as the number of individuals increases. This

highlights the need for continued refinement in feature extraction and algorithm tuning to

79

improve scalability and robustness. Optimizing hardware resources and enhancing algorithm

efficiency can help achieve consistent accuracies closer to the ideal target of 100%.

5.1.3 Processing Time Test

The summary of the relationship between distance and processing time required for facial

recognition is shown in the table below:

Distance (m) Processing time (s)

2 104.94

3 106.74

4 107.00

5 109.74

Average processing time = 107.11s

Table 11: Relationship between distance and processing time

The processing time and average processing time according to distances are calculated as

follows:

𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 =
𝑇𝑜𝑡𝑎𝑙 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑇𝑖𝑚𝑒 𝑝𝑒𝑟 𝐼𝑚𝑎𝑔𝑒 𝑜𝑓 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝑇𝑜𝑡𝑎𝑙 𝐼𝑚𝑎𝑔𝑒 𝑜𝑓 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒

 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑇𝑖𝑚𝑒 =
𝑇𝑜𝑡𝑎𝑙 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑇𝑖𝑚𝑒

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠 𝑇𝑒𝑠𝑡𝑒𝑑

The table illustrates the relationship between distance and processing time required for facial

recognition. As the distance from the camera increases from 2 meters to 5 meters, there is a

noticeable increase in processing time. At a distance of 2 meters, the processing time is 104.94

seconds. This time increases progressively with distance, reaching 106.74 seconds at 3 meters,

107.00 seconds at 4 meters, and 109.74 seconds at 5 meters. The average processing time across

these distances is calculated to be 107.11 seconds.

This trend suggests that as the distance between the camera and the subjects increases, the

system requires more time to process and recognize faces. This increase in processing time can

be attributed to several factors, including the decrease in resolution and detail of the faces

captured at greater distances, which necessitates more computational effort to accurately

identify distinguishing features. Additionally, the increased complexity of matching faces

against the database and potential variability in background noise at longer distances also

contribute to the longer processing times. Overall, these results highlight the need for

80

optimizing the system's performance to maintain efficiency and accuracy across varying

distances.

5.2 Discussion

Figure 71: Graph of distance vs accuracy

The graph illustrates the relationship between distance and accuracy in the facial recognition

system. As the distance from the camera increases, there is a clear and steady decline in

accuracy. At a distance of 2 meters, the system achieves nearly perfect accuracy at

approximately 100%. This high accuracy indicates that the system performs exceptionally well

when faces are captured within close proximity, where the resolution and detail of the facial

features are highest. As the distance increases to 3 meters, the accuracy drops to around 95%.

This decline, although slight, marks the beginning of the system's decreased effectiveness due

to the increased distance. The resolution begins to decrease, resulting in less detailed facial

features for the recognition algorithm to process accurately. Further increasing the distance to

4 meters results in a more pronounced drop in accuracy to approximately 91%. At this distance,

the resolution and detail of the faces are significantly lower, leading to a more challenging

recognition process. The system struggles more to extract and match facial features accurately,

which is reflected in the reduced accuracy. At 5 meters, the accuracy declines to around 89%.

This continued decline underscores the impact of increased distance on the system's

performance. At greater distances, not only is the resolution lower, but other factors such as

87

89

91

93

95

97

99

101

2 2.5 3 3.5 4 4.5 5

A
cc

u
ra

cy
 (

%
)

Distance (m)

Distance (m) vs Accuracy (%)

81

increased background noise and variability in lighting conditions also come into play, further

complicating the recognition task.

The overall trend depicted in the graph highlights a critical challenge in facial recognition

systems: maintaining high accuracy at greater distances. The decrease in accuracy with

increasing distance can be attributed to the reduction in the number of pixels representing each

face, leading to a loss of detail. Additionally, the increased complexity of distinguishing

between faces and matching them accurately in the database adds to the decline in performance.

Figure 72: Graph of the number of students captured vs processing time

The graph illustrates the relationship between the number of students in the frame and the

processing time required by the facial recognition system. As the number of students increases,

there is a noticeable increase in processing time. When there are 4 students in the frame, the

processing time is approximately 101.93 seconds. This serves as the baseline, reflecting the

system's performance with a relatively small number of faces to process. As the number of

students increases to 6, the processing time rises to about 104.65 seconds. This increase can be

attributed to the additional computational load required to process and distinguish between

more faces. The system must analyze more data, which naturally extends the processing time.

With 8 students, the processing time further increases to approximately 105.37 seconds. The

trend indicates that the system continues to require more time as the number of faces increases.

This is due to the complexity involved in accurately identifying and matching each face against

the database. When the number of students reaches 10, the processing time peaks at around

101

102

103

104

105

106

107

108

4 5 6 7 8 9 10

N
u

m
b

er
 o

f
St

u
d

en
ts

Processing time (s)

Number of Students vs Processing time(s)

82

106.94 seconds. At this point, the system is handling a significantly larger volume of data,

resulting in the longest processing time recorded. The increased number of faces in the frame

requires more intensive computation to maintain accuracy in facial recognition.

The overall trend depicted in the graph demonstrates a clear correlation between the number of

individuals and processing time. As more students are added to the frame, the processing time

increases steadily. This is indicative of the system's computational limitations and the

scalability challenges associated with processing multiple faces simultaneously.

Figure 73: Graph of the number of students captured vs accuracy

The graph illustrates the relationship between the number of students in the frame and the

accuracy of the facial recognition system. As the number of students increases, there is a clear

and steady decline in accuracy. When there are 4 students in the frame, the system achieves an

accuracy of approximately 97.92%. This high accuracy reflects the system's effectiveness when

dealing with a smaller number of faces, where it can dedicate more computational resources to

accurately identifying each individual. As the number of students increases to 6, the accuracy

drops to about 95.74%. This decline, although moderate, indicates that the system begins to

face challenges in maintaining high accuracy as the number of faces increases. The additional

faces introduce more complexity in distinguishing and matching each face correctly. With 8

students in the frame, the accuracy further decreases to approximately 93.18%. At this point,

the system has to manage even more faces, which reduces the available computational

resources per face. This leads to a greater chance of recognition errors. When the number of

90

91

92

93

94

95

96

97

98

4 5 6 7 8 9 10

A
cc

u
ra

cy
 (

%
)

Number of Students

Number of Students vs Accuracy (%)

83

students reaches 10, the accuracy falls to around 90.33%. This significant drop highlights the

system's difficulty in handling a large number of faces simultaneously. The increased volume

of data and the complexity of accurately identifying each face resulted in a noticeable decline

in performance.

The overall trend depicted in the graph shows a clear inverse relationship between the number

of individuals and the accuracy of the facial recognition system. As more students are added to

the frame, the accuracy steadily decreases. This is indicative of the system's limitations in

processing multiple faces with high precision.

Figure 74: Graph of distance vs processing time

The graph illustrates the relationship between the distance from the camera and the processing

time required by the facial recognition system. As the distance increases, there is a noticeable

increase in processing time, albeit with some variability. At a distance of 2 meters, the

processing time is approximately 104.94 seconds. This serves as the baseline, reflecting the

system's performance when faces are captured at proximity, where the resolution and detail of

facial features are highest. As the distance increases to 3 meters, the processing time rises to

about 106.74 seconds. This increase can be attributed to the additional computational effort

required to process faces captured at a slightly lower resolution, where the system needs to

work harder to maintain accuracy. With a further increase in distance to 4 meters, the

processing time experiences a slight dip to approximately 107.00 seconds. The near-plateauing

of processing time at this distance suggests that the system's performance might be stabilizing

temporarily despite the increased distance. However, the overall trend indicates that processing

104

105

106

107

108

109

110

2 2.5 3 3.5 4 4.5 5

P
ro

ce
ss

in
g

ti
m

e(
s)

Distance (m)

Distance(m) vs Processing time (s)

84

times continue to rise. When the distance reaches 5 meters, the processing time peaks at around

109.74 seconds. This significant increase highlights the system's challenges in processing faces

captured at greater distances. At this point, the system is dealing with lower-resolution images,

which require more intensive computation to accurately extract and match facial features.

The overall trend depicted in the graph shows that as the distance between the camera and the

subjects increases, the processing time required by the facial recognition system also increases.

This is indicative of the system's computational limitations and the additional effort needed to

maintain accuracy at greater distances.

85

6- Project Management

A Gantt chart is utilized to outline the project plan and oversee the project's progression by

continuously monitoring its progress. The chart enumerates the planned activities and the

estimated time required for each. The status of the tasks is indicated on the chart and updated

every week.

Figure 75: Gannt chart of the project preparation

Figure 76: Gannt chart of the project realisation

86

During the first session, the focus was on planning and conducting research. Key activities

included researching the project title, confirming the project and supervisor, writing and

submitting brief and ethics forms, and conducting background research. The planned and actual

progress were closely aligned, with minor deviations in some tasks.

The second session primarily concentrated on building the model, writing the program, testing

the system, analyzing data, and writing the thesis. Significant tasks included research on YOLO

face detection and setup, which was completed on time, and the setup of hardware and software

requirements, which experienced delays due to software changes affecting subsequent tasks.

Modifications and customizations to the YOLO code were made to enhance performance, and

sample images were collected and tested as planned. Dependency issues with YOLOv8 were

resolved, allowing for continued modifications and training of the YOLO model. The

development of the MTCNN algorithm was initially pursued but later revised to use CNN and

dlib for improved accuracy. This change was implemented after accuracy tests showed better

results with CNN and dlib. Throughout this session, continuous improvements were made to

enhance recognition features and accuracy, culminating in final tests to ensure the system met

project objectives. Preparations for the project presentation were completed on time, and the

project was successfully demonstrated. The thesis writing was completed, and the final

submission was made as scheduled.

Throughout both sessions, documentation processes, including brief form preparation, logbook

updates, data collection, and report and thesis writing, were consistently carried out. Despite

some delays caused by the extended time required for software implementation due to a lack

of image processing knowledge, most tasks were completed on time. Overall, the project was

completed within the planned timeline.

87

7- Conclusion

Throughout this project, both the face detection process and face recognition process have been

accomplished using Python programming language and the dlib image processing library along

with the OpenCV library as well. The results obtained from all experiments have been recorded

and analyzed.

In short, the aim of the project was achieved by completing the medium-range facial

recognition system with an average accuracy of 93.77%. The effects of distance and the number

of faces in the frame on the accuracy and processing time duration of the system have been

explored. Overall, the system functions well most of the time, except under extreme conditions

such as images captured in very low brightness and images with significant occlusions or

motion blur. However, several future improvements can be made to enhance the design and

performance of the facial recognition system.

7.1 Achievements

Technical Objective Status and Explanation

To develop a facial recognition system that

can identify multiple individuals

simultaneously at 93% accuracy with

greater distances than 3 meters.

Achieved. The overall system accuracy

achieved is 93.44%.

To establish a facial recognition system that

can verify 10 individuals in one frame.

Achieved. The system successfully verifies

10 individuals in a single frame.

To implement a real-time facial recognition

system that has a processing time of 3 to 6

seconds for multi-face detection and

recognition.

Not achieved. The system currently exceeds

the target processing time, taking 107.11s for

multi-face detection and recognition.

Table 12: Achievements of objectives

In this project, significant progress was made towards developing an effective medium-range

facial recognition system. Two out of the three technical objectives were successfully achieved.

The system can identify multiple individuals simultaneously at a high accuracy rate of 93.44%

even at distances greater than 3 meters, and it can verify 10 individuals in one frame.

88

However, the third objective, which aimed to implement a real-time facial recognition system

with a processing time of 3 to 6 seconds, was not met. The system currently takes longer than

the target time for multi-face detection and recognition. This shortfall can be attributed to

several factors, including the high computational complexity of the algorithms used, especially

Convolutional Neural Networks (CNN) used in this project, which are known for their high

accuracy but also require long processing times. Additionally, the limitations of the current

hardware setup are not powerful enough to handle the intensive computational load within the

desired time frame. Further optimization of the algorithm is required to reduce processing time

without compromising accuracy.

Future work should focus on addressing these issues to achieve the desired real-time

performance. This could involve optimizing the algorithms for faster execution, upgrading

hardware components, and exploring more efficient face detection and recognition techniques.

By tackling these challenges, the system's performance can be improved to meet the real-time

processing objectives.

7.2 Recommendations for Future Work

The medium-range facial recognition system has been developed with the specifications stated

in the objective. Despite the successful completion of this project, there are several

recommendations are suggested below to further enhance the performance and capabilities of

the medium-range facial recognition system:

• Reduce computational overhead by streamlining and simplifying the existing CNN-

based algorithms

• Utilize multi-core processors or GPUs more effectively through parallel processing

techniques

• Reduce the model size and complexity using pruning and quantization techniques

without significantly compromising accuracy

• Improve input image quality by implementing noise reduction, contrast adjustment, and

normalization

• Enhance interoperability with various software platforms and devices by developing

API endpoints and ensuring compatibility with standard data formats

89

8- List of references

[1] AGN Business Internet BV, “5 common biometric techniques compared,” Recogtech.com,

2020. https://www.recogtech.com/en/knowledge-base/5-common-biometric-techniques-

compared

[2] B. Vidyapeeth, “A Comparative Study of Biometric Technologies with Reference to

Human Interface K P Tripathi Lecturer (MCA Programme),” International Journal of

Computer Applications, vol. 14, no. 5, pp. 975–8887, 2011, Accessed: Oct. 16, 2022.

[Online]. Available: https://www.ijcaonline.org/volume14/number5/pxc3872493.pdf

[3] Kavita Manral, “RFID: What are its Advantages and Disadvantages?,” Schneider Electric

Blog, Jun. 20, 2021. https://blog.se.com/industry/machine-and-process-

management/2021/06/20/rifd-what-are-its-advantages-and-disadvantages/

[4] https://www.facebook.com/jason.brownlee.39, “How to Perform Face Detection with Deep

Learning,” Machine Learning Mastery, Jun. 02, 2019.

https://machinelearningmastery.com/how-to-perform-face-detection-with-classical-and-deep-

learning-methods-in-python-with-keras/

[5] S. Kostadinov, “What Is Deep Transfer Learning and Why Is It Becoming So Popular?,”

Medium, Nov. 16, 2019. https://towardsdatascience.com/what-is-deep-transfer-learning-and-

why-is-it-becoming-so-popular-91acdcc2717a

[6] E. Burns, “What is deep learning and how does it work?,” SearchEnterpriseAI, Mar. 2021.

https://www.techtarget.com/searchenterpriseai/definition/deep-learning-deep-neural-network

[7] N. Donges, “What is transfer learning? Exploring the popular deep learning approach,”

Built In, Aug. 25, 2022. https://builtin.com/data-science/transfer-learning

[8] “What is Face Detection and How Does It Work?,” SearchEnterpriseAI.

https://www.techtarget.com/searchenterpriseai/definition/face-detection

[9] “What is the Viola-Jones algorithm?,” Educative: Interactive Courses for Software

Developers. https://www.educative.io/answers/what-is-the-viola-jones-algorithm

https://www.recogtech.com/en/knowledge-base/5-common-biometric-techniques-compared
https://www.recogtech.com/en/knowledge-base/5-common-biometric-techniques-compared
https://www.ijcaonline.org/volume14/number5/pxc3872493.pdf
https://blog.se.com/industry/machine-and-process-management/2021/06/20/rifd-what-are-its-advantages-and-disadvantages/
https://blog.se.com/industry/machine-and-process-management/2021/06/20/rifd-what-are-its-advantages-and-disadvantages/
https://machinelearningmastery.com/how-to-perform-face-detection-with-classical-and-deep-learning-methods-in-python-with-keras/
https://machinelearningmastery.com/how-to-perform-face-detection-with-classical-and-deep-learning-methods-in-python-with-keras/
https://towardsdatascience.com/what-is-deep-transfer-learning-and-why-is-it-becoming-so-popular-91acdcc2717a
https://towardsdatascience.com/what-is-deep-transfer-learning-and-why-is-it-becoming-so-popular-91acdcc2717a
https://www.techtarget.com/searchenterpriseai/definition/deep-learning-deep-neural-network
https://builtin.com/data-science/transfer-learning
https://www.techtarget.com/searchenterpriseai/definition/face-detection
https://www.educative.io/answers/what-is-the-viola-jones-algorithm

90

[10] “Educative Answers - Trusted Answers to Developer Questions,” Educative.

https://www.educative.io/answers/what-is-histogram-of-oriented-gradients-hog

[11] A. Mittal, “Haar Cascades, Explained,” Medium, Dec. 21, 2020.

https://medium.com/analytics-vidhya/haar-cascades-explained-38210e57970d

[12] “What is SIFT?,” Educative: Interactive Courses for Software Developers.

https://www.educative.io/answers/what-is-sift

[13] “10 Best Face Recognition APIs,” www.banuba.com.

https://www.banuba.com/blog/best-face-recognition-apis (accessed Nov. 17, 2023).

[14] “Face Recognition and Face Detection using OpenCV - javatpoint,” www.javatpoint.com.

https://www.javatpoint.com/face-recognition-and-face-detection-using-opencv

[15] Tashmit, “Coding Ninjas Studio,” www.codingninjas.com.

https://www.codingninjas.com/studio/library/local-binary-pattern-algorithm (accessed Nov.

17, 2023).

[16] Kaspersky, “What is Facial Recognition – Definition and Explanation,” Kaspersky, Jan.

13, 2021. https://www.kaspersky.com/resource-center/definitions/what-is-facial-recognition

[17] P. Antoniadis, “How Do Eigenfaces Work?”

https://www.baeldung.com/cs/author/panagiotisantoniadis (accessed Jun. 17, 2023).

[18] “Face Recognition using Fisherfaces,” OpenGenus IQ: Learn Computer Science, Oct.

13, 2019. https://iq.opengenus.org/face-recognition-using-fisherfaces/

[19] “What is face recognition?,” PyImageSearch, May 01, 2021.

https://pyimagesearch.com/2021/05/01/what-is-face-recognition/

[20] D. Tyagi, “Introduction to SURF (Speeded-Up Robust Features),” Medium, Apr. 07,

2020. https://medium.com/@deepanshut041/introduction-to-surf-speeded-up-robust-

features-c7396d6e7c4e

[21] R. Lini, “Facial Landmark Detection Algorithms,” CodeX, Sep. 27, 2021.

https://medium.com/codex/facial-landmark-detection-algorithms-5b2d2a12adaf

https://www.educative.io/answers/what-is-histogram-of-oriented-gradients-hog
https://medium.com/analytics-vidhya/haar-cascades-explained-38210e57970d
https://www.educative.io/answers/what-is-sift
https://www.javatpoint.com/face-recognition-and-face-detection-using-opencv
https://www.kaspersky.com/resource-center/definitions/what-is-facial-recognition
https://iq.opengenus.org/face-recognition-using-fisherfaces/
https://pyimagesearch.com/2021/05/01/what-is-face-recognition/
https://medium.com/@deepanshut041/introduction-to-surf-speeded-up-robust-features-c7396d6e7c4e
https://medium.com/@deepanshut041/introduction-to-surf-speeded-up-robust-features-c7396d6e7c4e

91

[22] L. Oliver, “3D Face Recognition The Ultimate Guide For Greater Security,” Facia.ai,

Sep. 08, 2023. https://facia.ai/blog/3d-face-recognition/ (accessed Nov. 17, 2023).

[23] H. T, “DATA FUSION,” Haileleol Tibebu, Feb. 03, 2020. https://medium.com/haileleol-

tibebu/data-fusion-78e68e65b2d1

[24] G. S. M. Diyasa, A. Fauzi, M. Idhom, and A. Setiawan, “Multi-face Recognition for the

Detection of Prisoners in Jail using a Modified Cascade Classifier and CNN,” Journal of

Physics: Conference Series, vol. 1844, no. 1, p. 012005, Mar. 2021, doi:

https://doi.org/10.1088/1742-6596/1844/1/012005.

[25] T. Mantoro, M. A. Ayu, and Suhendi, “Multi-Faces Recognition Process Using Haar

Cascades and Eigenface Methods,” 2018 6th International Conference on Multimedia

Computing and Systems (ICMCS), May 2018, doi:

https://doi.org/10.1109/icmcs.2018.8525935.

[26] “University Classroom Attendance System Using FaceNet and Support Vector Machine

| IEEE Conference Publication | IEEE Xplore,” ieeexplore.ieee.org.

https://ieeexplore.ieee.org/document/8921316 (accessed Nov. 17, 2023).

[27] “YOLO Object Detection Explained: A Beginner’s Guide,” www.datacamp.com.

https://www.datacamp.com/blog/yolo-object-detection-explained

[28] R. Gradilla, “Multi-task Cascaded Convolutional Networks (MTCNN) for Face Detection

and Facial Landmark Alignment,” Medium, Jul. 27, 2020.

https://medium.com/@iselagradilla94/multi-task-cascaded-convolutional-networks-mtcnn-for-

face-detection-and-facial-landmark-alignment-7c21e8007923

[29] G. Learning, “Everything you need to know about VGG16,” Medium, Sep. 23, 2021.

https://medium.com/@mygreatlearning/everything-you-need-to-know-about-vgg16-

7315defb5918

[30] “Xiaomi Redmi Note 9 Pro 5G - Full phone specifications,” www.gsmarena.com.

https://www.gsmarena.com/xiaomi_redmi_note_9_pro_5g-10582.php (accessed Nov. 17,

2023).

https://medium.com/haileleol-tibebu/data-fusion-78e68e65b2d1
https://medium.com/haileleol-tibebu/data-fusion-78e68e65b2d1
https://doi.org/10.1088/1742-6596/1844/1/012005
https://doi.org/10.1109/icmcs.2018.8525935
https://www.datacamp.com/blog/yolo-object-detection-explained
https://medium.com/@iselagradilla94/multi-task-cascaded-convolutional-networks-mtcnn-for-face-detection-and-facial-landmark-alignment-7c21e8007923
https://medium.com/@iselagradilla94/multi-task-cascaded-convolutional-networks-mtcnn-for-face-detection-and-facial-landmark-alignment-7c21e8007923
https://medium.com/@mygreatlearning/everything-you-need-to-know-about-vgg16-7315defb5918
https://medium.com/@mygreatlearning/everything-you-need-to-know-about-vgg16-7315defb5918

92

[31] “Buy ASUS TUF Gaming F15 (FX507Z-C4HN027W) | For-Gaming | Laptops,” eStore

Malaysia. https://shop.asus.com/my/asus-tuf-gaming-f15-2022-fx507z-c4hn027w.html

(accessed Nov. 17, 2023).

[32] “Face detection with dlib (HOG and CNN),” PyImageSearch, Apr. 19, 2021.

https://pyimagesearch.com/2021/04/19/face-detection-with-dlib-hog-and-cnn/

[33] T. Shastrakar, “How to do Face detection with dlib (HOG and CNN),” www.linkedin.com,

Apr. 08, 2024. https://www.linkedin.com/pulse/how-do-face-detection-dlib-hog-cnn-tejas-

shastrakar-lsaue (accessed May 24, 2024).

[34] S. Singh, “A Step-by-Step Guide to Face Detection with the dlib Library,” Medium, Oct.

02, 2023. https://medium.com/@sukanyasingh303/a-step-by-step-guide-to-face-detection-

with-the-dlib-library-2e8f6429e632

[35] S. R. Rath, “Face Detection with Dlib using CNN,” DebuggerCafe, Jul. 05, 2021.

https://debuggercafe.com/face-detection-with-dlib-using-cnn/ (accessed May 24, 2024).

[36] SPARKLERS : We Are The Makers, “Face Recognition Based Complete Attendance

System with Database and Webpage using PC or Raspberry Pi,” YouTube, Sep. 05, 2023.

https://www.youtube.com/watch?v=qeHXHphI9cg (accessed May 24, 2024).

https://pyimagesearch.com/2021/04/19/face-detection-with-dlib-hog-and-cnn/
https://medium.com/@sukanyasingh303/a-step-by-step-guide-to-face-detection-with-the-dlib-library-2e8f6429e632
https://medium.com/@sukanyasingh303/a-step-by-step-guide-to-face-detection-with-the-dlib-library-2e8f6429e632

93

8- Appendix

Appendix 1 (“Flask.py”):

94

95

Appendix 2 (“feature extraction.py”):

96

Appendix 3 (“face recognize.py”):

97

98

